首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
风功率的短期预测对于电力系统的安全稳定运行具有重要意义。提出了一种基于总体平均经验模态分解(EEMD)和改进Elman神经网络的短期风功率组合预测方法。首先利用EEMD分解将风功率序列按不同波动尺度逐级分解,得到不同频率的分量以缓解风功率序列的非平稳性,然后对各分量分别建立改进的Elman神经网络预测模型进行预测,最后叠加各分量的预测结果得到最终预测数据。仿真结果表明,该方法不仅可以有效缓解风功率非平稳性对于预测精度的影响,还可以避免传统方法的模态混叠问题,具有较高的预测精度和适应性。  相似文献   

2.
准确的日前负荷预测有助于降低电力成本,提高电力系统的安全性和稳定性。该文提出一种基于NACEMD-GRU的组合型日前负荷预测方法。首先,引入NACEMD(噪声辅助复数据经验模态分解)方法对日前负荷数据进行分解,得到具有不同时频特性的日前负荷分量;然后针对各日前负荷分量分别建立基于GRU(门控循环神经网络单元)的深度学习预测模型,得到日前负荷的各分量预测结果;最后,将各分量进行组合形成总的日前负荷预测结果。实验算例表明,NACEMD方法能够进一步降低分解结果的模态混叠度,GRU适用于日前负荷预测。与现有方法相比,提出的组合型预测方法能够显著提升日前负荷预测精度。  相似文献   

3.
考虑到风电功率短期预测的准确性对电网调度具有重要作用,提出了一种由改进的集成经验稳态分解(MEEMD)与基于遗传算法优化的极限学习机(GAELM)相结合的短期风功率组合预测模型,首先对原始风功率时间序列进行总体平均经验模态分解(CEEMD),通过排列熵剔除异常分量,再对剩余分量进行经验模态分解(EMD),其结果即为MEEMD分解所得分量,对分量分别建立GAELM预测模型,将各分量预测结果相加,即得到最终预测结果。对东北某风电场实测数据进行试验表明,与传统预测方法相比,组合预测模型有效提高了短期风功率预测的精确性。  相似文献   

4.
针对EMD方法存在模态混叠和IMF分量过多等问题,文章提出了一种基于MEEMD与排列熵的风电功率超短期预测方法。首先,利用MEEMD将原始时间序列分解得到各IMF分量,避免模态混叠。然后,计算各IMF分量的排列熵值,将熵值相近的分量合并,有效降低计算量。最后,用模糊树方法分别建立各分量预测子模型,通过叠加得到风电功率预测值。基于某风电场实际运行数据的预测结果表明,该方法的预测精度较高且运算速度较快,适用于风电功率的超短期预测。  相似文献   

5.
针对光伏系统发电量的影响因素,提出一种基于经验模态分解(EMD)与回声状态网络(ESNs)的组合光伏系统短期发电功率预测方法。通过对同日类型的历史发电功率数据进行EMD,得到其不同尺度的周期分量和趋势分量;滤除其体现数据差异的各个较小周期分量,针对体现数据共性的分量建立ESNs预测模型;最后,将预测值与趋势分量组合得到最终的预测结果。预测结果对比分析表明:该方法与单一回声状态网络、BP神经网络和小波神经网络预测方法相比,计算速度快,预测精度高,稳定性好。  相似文献   

6.
针对传统光伏电站功率预测方法精度不高的问题,提出一种基于经验模态分解(EMD)与极限学习机(ELM)组合功率预测方法。该方法中,首先利用EMD分解分辨率为15 min的功率序列,得到一组相对平稳的分量,减少不同功率影响因素间的相互影响;然后针对各分量的不同特性,考虑相应气象因素作为输入,利用ELM神经网络建立不同的预测模型,分别预测各分量值;最后对ELM预测的各分量值求和,从而得到最终预测结果。算例仿真表明,该方法比传统的预测方法具有更高的预测准确度。  相似文献   

7.
文章将神经网络和小波分析理论相结合,提出了一种基于神经网络和小波分析的超短期风速预测方法。利用神经网络的非线性学习能力和小波理论的多分辨分析能力实现对风电场的风速预测,为风功率预测提供理论依据。首先,通过搭建神经网络物理模型,用以预测风机轮毂处的风速信号;其次,将该风速信号进行小波多分辨分解,滤除高频分量,得到较为平稳的对风速预测起决定性作用的低频分量;最后,对基于神经网络和小波分析的组合预测方法进行了仿真,并与NWP风速模型和实测风速进行了对比。结果表明,提出的基于神经网络和小波分析组合预测方法更贴近实测风速,对超短期风速预测起到了良好的效果。  相似文献   

8.
为提高超短期风功率预测精度,提出一种基于IEWT-FE-BO-LSTM的组合风功率预测模型,首先利用改进经验小波分解(IEWT)对历史风功率数据进行分解;然后引入模糊熵(FE)算法对各分解子模态进行复杂度计算重组子模态;再对各个重组分量分别建立基于长短时神经网络(LSTM)的预测模型,利用贝叶斯优化算法(BO)进行超参数组合,解决人为调参导致训练结果不佳的问题;最后通过历史风电场数据进行算例分析。结果表明,IEWT-FE-BO-LSTM模型对超短期风功率有较高的预测精度和预测效率。  相似文献   

9.
为提高短期风功率预测精度和预测的可控性,提出一种基于能量差优化变分模态分解和布谷鸟优化组合神经网络的短期风功率预测模型。采用能量差优化变分模态分解(EVMD)的模态数,将EVMD用于短期风功率分解,基于EVMD分解序列的不同模态特点,对非线性序列采用布谷鸟优化反向传播神经网络(CS-BPNN),对平稳序列采用自回归滑动平均模型(ARMA),并重构加权得到点预测值,并基于EVMD分解所丢失的序列信息构建核密度估计,在点预测模型的基础上,进行风功率的区间预测。将所提预测方法用于澳大利亚风电场的实际算例,实验结果表明,该方法可提高短期风功率预测的准确性。  相似文献   

10.
基于Elman神经网络的短期风电功率预测   总被引:1,自引:0,他引:1  
为提高风电场输出功率预测精度,提出一种动态基于神经网络的功率预测方法。根据实际运行的风电场相关风速、相关风向和风电功率的历史数据,建立了基于Elman神经元网络的短期风电功率预测模型。运用多层Elman神经网络模型对西北某风电场实际1h和24h的风电输出功率预测,与BP神经网络模型对比,经仿真分析证明前者具有预测精度高的特点,三隐含层Elman神经网络模型预测效果最佳。这表明利用Elman回归神经网络建模对风电功率进行预测是可行的,能有效提高功率预测精度。  相似文献   

11.
基于小波变换与Elman神经网络的短期风速组合预测   总被引:1,自引:0,他引:1  
风速的准确预测对风电场发电系统的经济和安全运行有着重要的作用。为了克服风速随机性强的缺点,提高短期风速预测的精度,提出了一种将小波变换与Elman神经网络相结合的短期风速组合预测模型。该模型由小波预处理模块和神经网络预测模块组成。首先利用小波预处理模块将风速序列作多尺度分解,重构得到不同频段的子序列,然后利用Elman神经网络模块分别对其训练和预测。实际风速预测结果表明,与单一的Elman和ARMA法相比,该组合预测模型的预测精度有较大的改善,可以用于风电场短期风速的预测。  相似文献   

12.
为提高短期风速预测的准确性,提出一种基于PAM聚类、奇异谱分解(SSD)和LSTM神经网络的组合预测模型来预测短期风速,以解决上述问题。首先,为提高神经网络的学习效率,采用PAM算法对原始风速数据进行相似日聚类;其次,SSD具有抑制模态混叠和虚假分量产生的优点,使用SSD分解风速序列,提取多尺度规律;最后,由于LSTM神经网络捕捉长时间依赖的序列的波动规律的能力较强,使用LSTM神经网络对分解后的风速分量进行预测,将各分量预测值叠加得到最终预测结果。实验结果表明,基于PAM-SSD-LSTM的组合预测模型可有效提高风速短期预测的准确率。  相似文献   

13.
魏炘  石强  符文熹  陈良 《水电能源科学》2020,38(11):207-210
为降低由于风速信号的非线性和非平稳性带来的风速预测难度,提高短期风速预测的准确性,提出一种考虑样本熵的组合分解模式和支持向量回归(SVR)相结合的预测模型。首先采用自适应噪声的完全集合经验模态分解(CEEMDAN)方法分解风速历史数据,并计算各模态分量的样本熵;然后采用变分模态分解(VMD)方法对样本熵最大的模态分量进行二次分解,充分削弱风速分量的非平稳性;接着对分解得到所有模态分量分别建立SVR预测模型;最后将各分量的预测值求和完成最终风速预测。实例分析表明,所提模型对比其他模型的预测误差最小,预测精度最高,可有效预测短期风速。  相似文献   

14.
徐青山  郑维高  卞海红 《太阳能学报》2015,36(12):2852-2859
考虑到直接对经验模式分解(EMD)所得多个分量分别建模预测会引入多重随机误差和产生较大预测工作量,提出一种基于游程检测法重构原则的EMD-Elman神经网络组合的风电短时功率预测算法,运用游程检测法对风电出力时间序列EMD得到系列本征模态函数IMF和趋势项Res进行波动性程度检测,将波动程度相似、变化规律相近的分量依照fine to coarse顺序重构成高频分量、低频分量和趋势项。然后针对性地对3个分量分别建立较准确的Elman神经网络短时多步预测模型,可减少预测分量建模数,提高预测精度和预测速度,最后将三分量预测结果自适应叠加。还分别给出两种预测模型的算例,对比分析发现EMD-Elman组合预测模型的精度优于Elman神经网络单一预测模型。  相似文献   

15.
目前对风电功率短时预测的研究主要集中在预测方法上,而缺乏对数据本身特性的探讨。从实测数据出发,呈现3种典型分辨率5 min、10 min、15 min,并结合Elman神经网络算法对超短期(4 h)和短期(24 h)的风力发电机输出功率进行预测分析。结果表明:分辨率为10 min的原始数据对风电输出功率的超短期预测具有更好的结果,15 min分辨率的数据对风电功率的短期预测结果更佳。采用合理分辨率的数据后,能够有效地提高风电功率的预测精度。  相似文献   

16.
为提高短期风速的预测精度,提出一种基于双模式分解、双通道卷积神经网络(CNN)和长短期记忆神经网络(LSTM)的组合预测模型以提高预测精度。首先,对经过PAM方法聚类后的风速时间序列利用奇异谱分解(SSD)和变分模态分解(VMD)2种信号分解方法进行分解,获得2类多尺度分量。不同模式的多尺度分量可降低原始风速的复杂度和非平稳性,实现不同模式模态分量规律的互补;其次,将2种分解方法得到的风速子序列合并为一个矩阵,输入到双通道CNN进行波形特征深度提取;最后,采用LSTM建立历史风速时序的时间依赖关系,在时空相关性分析的基础上得到最终风速预测结果。实验结果表明,基于双模式分解-双通道CNN-LSTM的组合预测模型可有效提高风速短期预测的精度。  相似文献   

17.
传统的BP神经网络(back propagation neural network, BPNN)虽然在功率预测方面已有广泛应用,但其对于随机波动性较强的风光发电功率预测准确度较低。文中提出一种基于CEEMD(complementary ensemble empirical mode decompo-sition)方法优化的遗传算法神经网络(genetic algorithm-BPNN,GA-BPNN)模型,首先用CEEMD方法将原始数据分解成易于预测的分量,并将各分量预测结果集总平均得到最终结果。以德国巴登-符腾堡州地区能源系统中风光发电功率的历史实例验证该模型的效果,并与其地预测模型进行对比,结果表明,无论是日前预测还是超短期预测,文中所提模型能够提高风光发电功率预测的准确度。  相似文献   

18.
针对分钟级的风速具有更强随机性和非线性的问题,建立了一种基于改进希尔伯特黄变换(HHT)的分钟级超短期风速预测模型.首先,利用HHT对原始风速数据进行分解;然后,采用希尔伯特变换(HT)对分解所得各本征模态函数(IMF)进行谱分析,针对其频谱特性分别建立不同的神经网络模型进行预测;最后,分别运用权重浮动区间模型和数学解析模型求取各分量权重系数,按权重叠加各分量预测结果得到2组风速预测值,再通过优化组合得到最终预测结果.采用某风电场实际运行数据,对所建模型的可靠性进行了验证.结果表明:该方法预测效果优于原HHT组合预测模型,可有效提高风速预测精度.  相似文献   

19.
随着电网中风电渗透率的逐年提高,对其出力进行精确预测是保障电网可靠运行的技术措施之一。文章建立了基于EEMD-HS-SVM短期风功率组合预测模型。采用EEMD分解技术对原始风功率序列做信息特征提取处理,将原始信号梯度化分解为一系列特征互异的本征模态函数,运用复杂统计理论体系下的样本熵作为特征,将特征相似的本征模态函数归类为尺度相异的新模态分量,根据新模态分量的局部特征与变化趋势,建立与之相对应的SVM预测模型。提出采用和声搜索算法优化SVM模型参数,有效改善了SVM算法存在的结构参数难以确定、训练效率低的不足。算例分析表明,EEMD-HS-SVM模型在风功率预测中具有较高的预测精度和预测效率。  相似文献   

20.
为解决因风电随机性带来的“弃风”问题,实现宽功率波动下的高效制氢,提出基于最小二乘支持向量机(LSSVM)的超短期组合预测模型,提高风电功率预测鲁棒性。通过变分模态分解(VMD)预处理将风电功率分解为不同带宽的子模态,以降低随机噪声及模态混叠的影响;引入蜻蜓算法(DA)优化LSSVM,建立超短期组合预测模型,以满足电解槽控制的时间分辨率及精度要求。以河北省某风电制氢示范项目为例,验证该算法对于高波动性数据具备更高的预测精度,为风电制氢系统的优化控制提供依据。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号