首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
对R404A在内螺纹铜管内冷凝压降进行了实验研究。为了给R404A在小管径换热器中应用的可行性提供依据,研究缩小管径带来压降上升的特性,设置了不同的影响因素来研究R404A在内螺纹铜管中的冷凝压降特性。实验工况为:饱和温度35~45℃,质流密度200~900 kg/(m~2·s),热流密度10 kW/m~2,入口干度0.1~0.9,内螺纹铜管管径分别为5、7和9.52 mm。实验结果表明:饱和温度对冷凝压降的影响主要集中在较高的质流密度区间,压降随饱和温度的升高而降低;压降随质流密度的增大而上升,随管径的减小而增大;随着干度值的降低,冷凝压降从一个峰值开始逐渐下降,其中5 mm管的压降下降速率最大;通过对比相对传热系数得出3种内螺纹管中,5 mm管的综合性能更好。  相似文献   

2.
为研究R410A与R134a在水平光管内的冷凝换热特性,在管内冷凝换热试验台上进行冷凝试验,分析质量流量、冷凝温度、测试水雷诺数Re、管径和制冷剂物性对换热系数和压降的影响。研究表明:换热系数、压降均随着质量流量的增加而变大,随冷凝温度的升高而减小,换热系数随测试水雷诺数Re的增加而减小,而测试水雷诺数Re对压降的影响相对较小;尽管R410A的换热系数随管径的减小而增大,而管径对R134a换热系数的影响并不显著,R134a与R410A的压降均随管径的减小而增大;单位压降换热系数随质量流量的增加而减小; Cavallini et al.关联式可较好预测R410A与R134a在光管内换热系数,而Shah关联式只能用于预测R134a的换热系数。  相似文献   

3.
水平单管内换热实验研究   总被引:1,自引:1,他引:0  
利用隔膜泵作为系统动力输出源,搭建了单管内传热和流动测试实验台,对制冷剂R22在水平单管内的换热性能进行了实验研究,考察了不同蒸发温度和不同冷凝温度对总传热系数、制冷剂表面换热系数和管内压降的影响.实验结果表明:总传热系数和制冷剂表面换热系数均随着蒸发温度和冷凝温度的上升而增大;管内压降随着蒸发温度的上升而减小,随着冷凝温度的上升而增大;对于同一根实验管,在相同的冷却水流量和制冷剂质量流量下,最佳蒸发工况为10℃;冷凝实验中,总传热系数和制冷剂表面换热系数在40℃时高于其他两种冷凝温度时的值,但35℃冷凝时,管内压降高于其他两种工况.  相似文献   

4.
为研究强化管的冷凝换热性能和强化换热机理,采用实验的方法对R410A在外径6.35和8 mm的光管及内螺纹管(螺旋角为18°和28°)中的冷凝换热性能进行了研究,并与R134a进行对比,实验工况:冷凝温度30和35℃,质量流速400~1 100 kg/(m~2·s)。结果表明:螺纹管冷凝传热系数强化倍率均显著大于内表面扩展倍率;R134a强化因子大于R410A,强化管对粘度、表面张力较大的制冷剂强化效果更显著;8 mm管强化因子大于6 mm,管径较大时,换热提升效果更好;水侧雷诺数为14 000时,8 mm、28°螺纹管在质量流速为500 kg/(m~2·s)时,管内外侧热阻接近,强化效果较好。  相似文献   

5.
在空气源热泵热水器中,使用混合型制冷工质R417a,冷凝器采用螺旋套管换热器且套管环形空间内制冷剂与内管中的水逆流换热。对在不同工况下,环形通道内R417a的凝结换热特性进行实验研究和理论分析。实验的工况为:水的体积流量为0.60~1.00 m~3/h,水的流速为0.58~0.98 m/s,冷凝器进水温度为20.0~55.0℃。实验结果表明:环境温度为15.0℃,螺旋套管内R417a的凝结传热系数随冷凝饱和温度的升高而减小,局部凝结传热系数随干度的增大而增大。当冷凝器进水体积流量为0.60 m~3/h,饱和冷凝温度由40.0℃增加至60.0℃时,冷凝器制冷剂侧凝结传热系数从3 839.0减小至2 372.0 W/(m~2·K),约减少了38.1%。  相似文献   

6.
对光管内R32流动冷凝换热特性进行试验研究,工况设定时冷凝温度为35℃、40℃和45℃,质量流量为500~1 100 kg/(m~2·s),冷冻水Re为10 000、20 000、40 000。试验主要分析工况条件、管径、制冷剂物性对冷凝换热系数的影响,发现R32冷凝换热系数随质量流量的增加、冷凝温度的降低、管径的减小而增大,其中R32的换热系数约是R22的1.576~1.718倍。对换热器换热热阻比重受工况条件的影响进行研究,发现制冷剂热阻占总热阻比值R_(hr)随质量流量的增加而减小,随着测试水Re的增加而增大,且R32的R_(hr)值小于R22的R_(hr)值。  相似文献   

7.
搭建了一个单管管外流动蒸发换热实验台,研究工质R410A在两种双侧强化管外流动蒸发换热特性。实验段分别为一根长2 000 mm,外径为25.4 mm的光滑管和两根相同尺寸的双侧强化管。实验工况:蒸发饱和温度为5~10℃,水的进口温度为8~18℃,水流量为0.6~1.6 m~3/h。在处理数据过程中采用G-W图解法获得管内水侧对流换热系数,再利用热阻分离法获得管外蒸发换热系数。结果表明:与光滑管表面传热系数相比,TLD型管的管内、管外强化倍率分别为3.49~3.7和4.78~8.86;EX2型管的管内、管外强化倍率分别为3.25~3.68和5.9~9.23;EX2型管管外换热性能较好,TLD型管管内换热性能较好。  相似文献   

8.
对R290在5 mm小管径内的凝结换热特性进行了实验。实验工况:热流密度5~10 kW/m~2、质量流率180~250 kg/(m~2·s)、饱和温度40~55℃、管径5 mm。研究了质量流速、饱和温度、热流密度及管型对管内换热系数的影响。研究表明:换热系数随质量流率的增大而增大,随饱和温度的上升而下降,且在干度较大区域,影响更加明显;换热系数随热流密度的增大而增大,且存在最佳热流密度使其达到最大值;相同工况下,内肋管换热系数大于光管,在质量流速低、干度小的区域内肋管的强化效果更优。  相似文献   

9.
为了研究内螺纹管对低温烟气传热强化的效果,通过对内螺纹管换热器和光管换热器在低温烟气中的传热试验,比较分析内螺纹管和光管两种换热器在不同工况下的传热系数,根据试验数据计算拟合出试验传热关联式。结果表明:烟气流速对总的换热系数有较大的影响,工质水流速不变,烟气流速从2.0 m/s增加到3.0 m/s时,内螺纹管换热器的换热系数增长率为17.1%;管内工质水无相变时,工质水流速对总的换热系数影响不大;低温换热的热阻主要集中在烟气侧;内螺纹管可以强化低温烟气的换热,但强化效果不明显;内螺纹管工质水侧的传热关联式Nu=0.009Re~(0.985)Pr~(0.4)(1.1×10~4Re2.3×10~4)。  相似文献   

10.
搭建5 mm内螺纹小铜管内水平单管沸腾实验台,实验工况为饱和蒸发温度20℃,热流密度25 kW/m~2,质量流速100~300 kg/(m~2·s),干度0.1~0.9。对比研究替代制冷剂R32与R290在不同干度和质量流速下的沸腾压降与换热特性。结果表明:两种制冷剂的摩擦压降均随质量流速的增加而显著增大,R290的摩擦压降比R32平均大59.4%,且随着干度的增大摩擦压降的差值呈上升趋势。R32与R290的沸腾换热系数与质量流速呈正相关,在0.1~0.6中低干度区域内,R32的沸腾换热系数明显大于R290,但在干度大于0.6的高干度区域内,R32的沸腾换热系数仅比R290大9.8%,两者数值较为接近。通过对SunMishima压降关联式与Li换热关联式进行修正,提高了关联式的准确性,修正后实验值与预测值的压降平均相对偏差为15.93%,沸腾换热系数平均相对偏差为16.71%。  相似文献   

11.
通过建立R290热泵供热换热器模型,对R290供热换热器的总传热系数进行计算,得出增大R290的质量流速,减小换热管的直径,降低冷凝饱和温度,可增加总传热系数,减少供热换热器尺寸,节约金属材料。通过对R290冷凝流动过程的压降计算,得到随着换热管内径、换热管长、R290质量流量和冷凝温度的变化,沿程阻力压降的变化最大,而局部阻力压力降和加速度阻力压降的变化较小。应从系统运行性能和加工成本等方面综合考虑,优化选择合适的管径、管长和R290质量流量,以节约能源,保护环境。  相似文献   

12.
环保型制冷剂R134A作为R22的替代品已广泛应用于各种制冷技术,在不断探索更完美的制冷剂替代品过程中,微细通道换热技术也逐渐成为近些年的研究热点。为了研究R134A在3 mm紫铜管内沸腾换热过程中的压降特性,在饱和温度为0~20℃、热流密度为5~10 kW/m~2、干度变化在0~1、质量流率在300~500 kg/(m~2·s)的实验工况下进行实验,通过对压力、温度和干度等重要物理参数的控制和试验数据的分析,得出以下结论:压降在相同干度区随质量流率的增大而增大,但在高干度区和低干度区的增幅不同;干度对压降的影响很大程度上与沸腾过程中的流动型态发生变化相关;饱和温度与压降的关系主要呈现负相关;而热流密度在压降影响中的占比则是很小的一部分。  相似文献   

13.
王欢  李敏霞  杨英英 《太阳能学报》2015,36(11):2597-2604
对流体R32在内径2 mm的水平光滑圆管内的冷凝换热特性进行实验研究。实验设定的流体饱和温度为35、40和45℃,质量流量为100~500 kg/(m2·s),热流密度7~28 k W/m2。实验获得R32在不同工况下的冷凝换热系数和摩擦压降梯度。发现其换热系数随质量流量增加而增大,随饱和温度提高而减小。入口干度和热流密度对其影响不大。摩擦压降梯度随质量流量增加而增加,相同质量流量下,随饱和温度升高而降低。并将该次实验值与其他经典换热模型和压降模型进行对比分析,发现Baird模型对该次实验的换热系数预测较好,Müller-Heck模型和Chisholm模型对R32的摩擦压降预测较好。  相似文献   

14.
对制冷剂R290在微细圆管内流动沸腾摩擦压降梯度进行了定性的理论分析和定量的实验研究,分析不同影响因素下其变化规律。实验工况:质量流率50~1 020 kg/(m2•s)、热流密度1~70 kW/m2、管径1~3 mm、饱和温度-10~25 ℃、干度0~1。实验结果表明:质量流率的增大和换热管径的减小,都会造成摩擦压降梯度和增长幅度大幅增加;热流密度值的变化不影响摩擦压降梯度,但会影响摩擦压降达到最大值的时间;摩擦压降梯度随着饱和温度和管径的减小而增大;摩擦压降梯度在中低干度时快速增加,在高干度时增速减小趋于平稳,直至达到最大值后缓慢减小。  相似文献   

15.
通过数值模拟的方法在雷诺数2 000~40 000范围内,对比分析了高效螺纹管与单向螺纹管在传热性能和压降性能的影响。结果显示,高效螺纹管由于交叉螺旋线使得壁面产生一定的宏观变形产生一个持续的湍流导致边界层减薄,管内螺旋线并没有使管内流体产生旋转流动,管内平均努塞尔数几乎为零,而单向螺纹管管内流体随螺旋线产生旋转流动;高效螺纹管受螺纹深度及螺旋角度影响较大,当H=0.7 mm时,努塞尔数增大1.57~1.83倍,但压降增大了3.83倍,当螺角为50°时努塞尔数增大1.76~1.89倍,但压降也增大了5.6倍,高效螺纹管深度为0.7 mm,螺旋角为50°时能够得到一个比较好的传热效果。  相似文献   

16.
在饱和温度为30~50℃,质量流量为200~600 kg/(m~2·s),干度为0~1.0的工况范围内,对制冷剂R152a在微通道内的流动冷凝换热特性进行了实验研究,主要分析了冷凝温度、管型尺寸、质量流量、干度等参数对微通道内换热系数、压降的影响。实验结果显示:换热系数及压降均随着制冷剂干度、质量流量的增加而增大,随着冷凝温度的增大而减小;管型尺寸对压降的影响不大,但对换热系数具有较大影响。  相似文献   

17.
陈学  刘晓华  沈胜强 《太阳能学报》2015,36(8):1996-2001
以水为工质,对直径为19 mm的铝黄铜管外降膜蒸发传热过程进行实验研究。实验通过测量管表面和饱和蒸气温度,计算得到平均和局部传热系数。由实验数据分析喷淋密度、蒸发温度、热流密度、管间距等参数对管外平均传热系数的影响,并与直径25.4 mm铝黄铜管降膜蒸发传热系数进行比较,讨论局部传热系数随周向角度的变化。结果表明,在实验范围内,管外平均传热系数随温度的升高而增大,随喷淋密度的增大先增大,后略微下降。小管径管的降膜蒸发传热系数大于大管径管的传热系数。  相似文献   

18.
“球囊夹紧法”取出锁骨下动脉支架推送杆断裂残端一例   总被引:1,自引:0,他引:1  
针对水平光滑管和微肋管,基于FLUENT平台对制冷剂管内沸腾传热特性进行了数值模拟,研究质量流量、热流密度及干度等因素对制冷剂R245fa沸腾换热系数的影响。模拟结果表明:沸腾换热系数随着制冷剂质量流速与热流密度的增加而提高;随着干度的增加,换热系数先增加再降低,并在x=0.7时达到极大值;相比光滑管,微肋管内制冷剂的沸腾传热系数能提高10%~25%。  相似文献   

19.
针对水平光滑管和微肋管,基于FLUENT平台对制冷剂管内沸腾传热特性进行了数值模拟,研究质量流量、热流密度及干度等因素对制冷剂R245fa沸腾换热系数的影响。模拟结果表明:沸腾换热系数随着制冷剂质量流速与热流密度的增加而提高;随着干度的增加,换热系数先增加再降低,并在x=0.7时达到极大值;相比光滑管,微肋管内制冷剂的沸腾传热系数能提高10%~25%。  相似文献   

20.
搭建了氨(R717)沸腾换热测试台,对内径3 mm水平光管内R717的沸腾换热特性进行了测试,分析热流密度、干度、饱和温度及质量流率对沸腾换热及换热方式的影响。实验热流密度15~40 kW/m~2,质量流率40~160 kg/(m~2·s),饱和温度-5、0和5℃,干度0.1~0.9。结果表明:在氨制冷剂管内沸腾换热的过程中,质量流率过低和热流密度过高会导致干涸传热恶化,换热形式由核态沸腾换热向气态氨制冷剂强制对流换热转变,同时也影响干涸的起始干度;在干涸发生前,沸腾换热系数随着干度的增加而增大,逐渐达到峰值;在干涸发生后,传热恶化导致换热系数急剧降低;饱和温度升高会加快核态沸腾气泡生成速率,强化沸腾换热,但干涸的起始干度随着饱和温度升高而降低。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号