首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 19 毫秒
1.
跨音速离心压气机级间静压测量研究   总被引:1,自引:0,他引:1  
为获得车用涡轮增压器离心压气机各元件进出口及周向静压分布,开展了跨音速离心压气机级间静压测试研究。研究结果表明:蜗舌结构未造成导风轮进口静压分布周向不均匀(导风轮进口周向压力波动在2.5 kPa之内);蜗舌结构导致短叶片轮缘静压分布的周向不均匀性;同一转速下,跨音速流动最高效率工况周向静压分布不均匀;叶轮跨音速时,蜗壳沿着流动方向进行减速扩压;同一转速下,扩压器静压提升变化很小(约在3 kPa之内),而叶轮静压提升变化很大(约13~50 kPa),叶轮静压提升的改变决定压比流量特性线的陡峭程度。  相似文献   

2.
基于蜗壳周向流动不均匀的特性,建立增压器涡轮级全周计算模型,并与试验数据进行对比,验证数值计算结果的有效性.在此基础上,根据试验数据确定边界条件进行三维黏性数值计算,重点探讨蜗壳周向流动非均匀性对可调向心涡轮内部流场的影响.计算结果表明:该增压器蜗壳周向流动的非均匀性导致导叶和叶轮内部的流场分布出现周向不均匀的特性,即导叶入口气流角周向分布变化较大,叶轮各叶片负荷和各通道流量均呈现周向分布不均匀的特点.个别叶片负荷突变,有可能诱发叶片振动,降低涡轮使用寿命.  相似文献   

3.
分流叶片周向位置设计及其对离心叶轮内部流动的影响   总被引:3,自引:0,他引:3  
利用计算流体力学软件,对某高压比、高转速、小流量离心式压气机的半开式叶轮内部三维粘性流场进行了数值模拟研究。重点分析了分流叶片周向位置对叶轮内部流动和性能的影响,提出了适合此半开式离心叶轮分流叶片周向位置的设计方案。结果表明:分流叶片不同周向位置对流场影响明显,当分流叶片偏向长叶片吸力面侧时,叶轮流道内低速区增大,流动分布不均匀。研究还发现:固定分流叶片进口而将出口位置向长叶片压力面侧偏置,可以改善叶轮内部流动情况,提高叶轮性能。  相似文献   

4.
离心压气机弯管进口畸变非定常特性   总被引:3,自引:0,他引:3  
采用数值模拟计算的方法研究了90°弯管对涡轮增压器装配的离心压气机进口流场产生的畸变,比较了两种不同轴向位置弯管所致的进口畸变对压气机性能的影响,并对压气机内部的三维非定常流动进行了频域分析.结果表明,弯管畸变对离心压气机性能的恶化程度与弯管所在位置有关,距离叶轮进口较远的弯管影响较大.畸变引起压气机性能在大流量时有明显降低,在小流量时性能恶化程度较小.弯管畸变导致叶轮进口前的压力脉动增强,大流量时改变了叶轮流道上游和叶顶间隙内的压力频谱结构,显著提高了转子基频的扰动强度.同时畸变也造成了叶片振动和蜗壳舌部噪声的恶化,在小流量工况下的作用更加明显.  相似文献   

5.
为研究叶片包角对离心泵整机性能及其内部流场结构的影响,对设计的叶片包角95°、100°、105°、108°的四副叶轮模型A、B、C、D进行三维流场的数值模拟,基于RNG k-ε湍流模型求解Navier-Stokes方程。结果表明:叶片包角从95°增加到108°,离心泵的扬程下降了3.83%,效率下降了0.76%;不同包角下叶轮出口区域湍动能、叶片表面静压及其载荷分布都存在差异,随着包角增大湍动能升高,叶片表面最大载荷向后偏移,叶轮A为最佳包角选择;蜗壳进口处压力和速度沿周向波动十分明显,包角的改变未能明显改变蜗壳进口沿周向的水流这种不均匀特性。  相似文献   

6.
针对V型发动机的共用单一管路对置离心压气机进口流场畸变特性进行了研究,通过台架试验测试了初始压气机性能,完成了仿真模型的标定。在此基础上分析了压气机进口流场的变化特征,分析结果表明:共用单一管路对压气机特性影响明显,造成了两侧压气机堵塞流量的降低,在大流量工况区域效率明显下降,右侧压气机恶化程度要明显高于左侧。原因在于受安装位置空间限制,喉口处畸变扩展与进口周向畸变叠加效应使得右侧压气机在周向和叶高方向的畸变程度均高于左侧压气机。进口的畸变效应会一直持续至压气机叶轮内部,使压气机性能变差。  相似文献   

7.
为了研究多工况下不同叶轮出口宽度对离心泵非定常性能的影响,基于RNG k-ε湍流模型对叶轮出口宽度分别为11、12、13、14和15 mm的离心泵模型分别在0.8Q_d、1.0Q_d、1.2Q_d三种流量工况下进行定常和非定常的数值模拟,得到离心泵的外特性曲线、内部流场以及压力脉动特性,并进行对比分析。结果表明:离心泵的扬程随叶轮出口宽度的增加而增加,存在一个最佳的叶轮出口宽度使其效率最佳且最佳效率点向大流量点偏移;随着叶轮出口宽度的增加,叶轮截面的最大压力值呈先增加后减小再增加的趋势,小流量工况下的湍动能较大区域随叶轮出口宽度的增加由叶轮流道出口向叶轮流道中间发展;各监测点的压力脉动均呈周期性变化,压力系数随流量的增大而增大,在设计和大流量工况下,当叶轮出口宽度为13 mm时压力脉动幅值明显小于其他型式的叶轮,因此适当增大叶轮的出口宽度有利于减小离心泵的压力脉动、提高其性能。  相似文献   

8.
基于4个具有不同周向前弯角度叶片(前弯1.27°,6.1°,8.3°,12°)的低压轴流风扇,对叶顶泄漏流场进行了实验和数值模拟.利用雷诺平均N-S方程组加S-A一方程湍流模型对叶轮在稳定工况点处进行了三维粘性流场的数值计算,分析了叶顶处叶片表面压力的轴向分布,计算结果表明:随着叶片周向前弯角度的增加,叶顶泄漏涡的初始位置逐渐向叶片后缘移动.利用粒子图像测速仪(PIV)系统对叶轮的叶顶泄漏流场进行了实验测量,清晰地展示叶顶泄漏涡的发展过程,结果显示:随着叶片周向前弯角度的增加,叶顶泄漏涡的轴向位移"先减小后增大",周向位移"先增大后减小".  相似文献   

9.
针对某可调向心涡轮增压器,基于蜗壳流动周向非均匀性的分布规律,提出采用改进喷嘴座连接臂结构和非均匀布置可调导叶的设计方案,以降低涡轮级各部分的流动损失,提高涡轮效率.结果表明:改型后涡轮工作在发动机标定功率工况对应相似转速条件下效率相对提高值最大为5.18%,,发动机最大转矩工况对应相似转速条件下效率相对提高值最大为3.57%,;改型后蜗壳出口气流角变得更加均匀,蜗壳出口气流角与导叶开度角相接近,减小了喷嘴环区域的流动损失,解释了改型前、后涡轮效率提高的原因;改型后各叶轮流道流量的周向非均匀性明显降低,各叶轮叶片负荷周向分布更加均匀.证明改型方案对提高涡轮效率,降低叶片振动,延长涡轮有效使用寿命具有积极的影响.  相似文献   

10.
以OB-84型动叶可调轴流风机为研究对象,将定常计算所得流场作为非定常计算的初场,模拟了风机内部各监测点处的压力脉动及瞬态流场特性.结果表明:不同监测点的压力信号均呈周期或类周期波动,其压力脉动强度随体积流量增大呈减小趋势,最大压力脉动强度位于叶顶间隙处;各监测点均在叶片通过频率处出现最高时频分布幅值,改变体积流量仅影响时频分布数值;随体积流量增大,10%叶高截面上的平均湍动能水平提高,而叶轮出口截面上的高压区向轮毂方向移动;随时间延长,叶片尾缘处和相邻叶片间的湍动能增强;叶轮旋转过程中,叶轮出口截面上的高压区在机壳与轮毂间呈现往复运动的现象.  相似文献   

11.
应用数值方法研究了单级涡轮轮缘泄漏对动叶非轴对称端壁端部二次流损失及冷却效果的影响,得到了不同封严冷气质量流量比(MFR)下的叶栅内部流场特征,并与轴对称端壁模型进行对比。结果表明:轮缘泄漏吹扫使得非轴对称端壁对气流偏转的改善作用削弱;当冷气量从0.4%增大到1%时,相比于轴对称端壁模型,应用非轴对称端壁所产生的轴向涡量减小量从11.02%下降到了5.65%,非轴对称端壁的效果明显减弱;封严气流在动叶非轴对称端壁表面形成了三角形的气膜冷却区域,但绝热气膜有效度在流动的周向以及轴向方向上较轴对称端壁均有一定程度的减小,主要发生在叶片吸力面角区以及压力面侧马蹄涡的偏转路径上。  相似文献   

12.
为揭示转子前缘轮毂间隙泄漏流对高负荷压气机气动性能影响的物理机制,采用轮毂间隙边界条件模化处理方法,开展了轮毂泄漏流对跨声速压气机转子性能影响的三维定常数值模拟,分析了不同轮毂泄漏流量下压气机轮毂壁面流场结构与流态变化特征。研究结果表明:轮毂泄漏流会恶化压气机流通能力,影响程度随着泄漏量增加而逐渐增大。在近峰值效率工况下,当泄漏流量达到0.50%时,压气机流量约减小0.74%。当轮毂泄漏流达到一定强度后,反而呈现出部分正面效果,使得压气机压比或效率得到一定程度改善。轮毂泄漏流通过影响轮毂壁面流场结构空间分布来对压气机气动性能施加影响,尤其是鞍点的位置决定着轮毂间隙下游回流区和顺流区的影响范围以及轮毂壁面横向潜流强度。  相似文献   

13.
为了解抽蓄机组水轮机工况下活动导叶不同开度下的内流特性,以某抽水蓄能电站水泵水轮机为研究对象,基于SST k-ω湍流模型,进行活动导叶不同开度下全流道三维非定常数值模拟和分析,探讨活动导叶开度对过流部件内部流场的影响.结果表明:随着导叶开度的增加,水泵水轮机的流量增大,转轮力矩增大但增幅降低,效率先增大后降低.蜗壳整体上的压力沿周向分布比较均匀,从蜗壳进口到蜗壳出口均匀降低,水力损失较小;固定导叶形状及安放角与活动导叶搭配影响较大,小开度和大开度工况下活动导叶和固定导叶进口处水力损失大;压力变化线与进出口是否平行影响转轮内部流态,中开度转轮叶片做功最好;小开度工况下易产生偏心涡带,降低机组效率,不利于尾水管能量的回收,中开度工况下尾水管流态最好.研究结论对抽水蓄能机组运行提供了理论参考.  相似文献   

14.
为分析蜗壳进口宽度对离心泵非定常性能的影响,以一台比转速为126的离心泵为研究对象,采用ANSYS CFX软件的标准k-ε湍流模型对同一叶轮、不同蜗壳进口宽度(56、63、66.5和70 mm)时,不同流量工况(0.8~1.2设计流量)条件下泵的外特性、内部流场以及压力脉动进行研究。结果表明:在设计流量下,适当改变蜗壳进口宽度对离心泵的扬程、效率影响不大;但随着蜗壳进口宽度的增大,蜗壳隔舌处的湍动能增大并向扩散段延伸;同时,蜗壳隔舌处压力脉动的压力值增大了4.2%,压力脉动幅值增大了3.4倍。设计时为提高中比转速离心泵的综合性能,应取蜗壳进口宽度为叶轮出口直径的1.8倍。  相似文献   

15.
为研究射流液滴与空气双向耦合流动对压气机内部流场及其工作性能的影响,以NASA Stage35为模型,基于相似理论得到高空高马赫数下相似流场和压气机进出口条件,并对多工况下不同喷水量和液滴粒径下的射流冷却湿压缩过程进行分析。研究表明:射流预冷技术可有效抑制压气机进气同比温升。液滴与空气双向耦合流动使得压气机内部流场发生变化,有效降低叶片载荷的同时使动叶内的激波后移。在空气质量流量的0~2%的射流范围内,随着喷雾粒径的增大,压气机压比先增大后减小;比耗功量随喷雾量的增多而减少。25 km高空3.5Ma工况下,5μm粒径且喷雾量为空气质量流量的2%时,液滴蒸发率超过50%,压气机出口温度下降约20%,实际比压缩耗功同比减少约12%,压气机等熵效率提升约8%。  相似文献   

16.
对比分析了6种不同转速下压气机性能的试验与仿真结果.在验证了ANSYS CFX软件用于压气机性能模拟分析中的可靠性后,采用数值模拟方法对3种不同叶片后弯角的叶轮进行了性能计算,得到了相关转速下的压气机特性曲线.仿真结果表明:在不改变压气机出口静压时,在一定的叶片出口角范围内,叶片后弯角的增加使两条特性曲线均向小流量方向偏移,但近喘振点边界得到了拓展,使得压气机的流量范围变得更宽;在小流量区域内,叶片后弯角的增大能够改善压气机内部流动状况,提高叶轮工作效率;而在大流量区域内,较大的叶片后弯角会使叶轮的流通特性降低,叶轮的工作效率反而会降低;适当增加叶片后弯角可以增大压气机工作范围,使压气机效率和流道内的流动均得到提高和改善.  相似文献   

17.
采用数值模拟和试验相结合的方法对某十级高负荷高压压气机末级总温分布规律及产生机理进行了详细的分析和阐述。结果表明:压气机末级静叶出口总温在径向和周向的分布均呈现出较明显的非均匀分布,在径向上表现为叶根和叶尖区域总温高而叶中区域总温低的分布特征,在周向上表现为主流区总温低而尾迹区总温高的分布特征;径向总温分散度沿压气机末级静叶往下游发展过程中呈现逐渐降低的变化趋势,而周向总温分散度则呈现先增加后减小的变化趋势;压气机末级静叶入口总温径向不均匀分布及大弓形静叶设计产生的“C”型径向压力分布特征是导致压气机出口总温周向不均匀分布的根本原因。  相似文献   

18.
为研究潜水泵的压力脉动特性,基于ANSYS CFX软件对潜水泵进行压力脉动模拟分析。结果表明,在一个旋转周期内,叶轮中叶片工作面和背面的压力脉动有明显的周期性,均出现五个波峰;蜗壳壁面上静压均值从Ⅰ~Ⅷ断面呈现先增大后减小的趋势,隔舌处静压均值大于Ⅰ断面处;蜗壳内部监测点处的主频均与叶频数值相关,且Ⅰ断面处蜗壳与叶轮动静干涉最为明显。模拟结果从侧面揭示了潜水泵内部的压力脉动情况,为减小潜水泵内部压力脉动和解决噪声形成提供了理论依据。  相似文献   

19.
基于试验测试数据建立增压柴油机的仿真模型,开展0~4 000m高原适应性研究工作,研究增压柴油机性能及压气机性能海拔变化关系,并研究不同海拔下压气机内部流动状况,分析压气机效率下降原因。研究结果表明:高海拔工况下,柴油机功率、转矩与燃油消耗率下降,进气流量减少,增压压力下降,压气机压比增大,效率下降。压气机子午面的相对总压的低压区域压力较小,叶顶间隙间及叶轮出口高熵值区域增大且范围提前。跨音速流动区域增大,激波损失增大,叶顶间隙流加强,泄漏损失增大,分流叶片压力侧主流与低速泄漏流掺混,尾迹区域增大,掺混损失增加,压气机叶轮内部损失增大。因此高原环境下,压气机效率降低。  相似文献   

20.
本研究采用三维气动设计方法设计了具有NACA65-810翼型的直叶轮、周向前弯和周向后弯叶轮,并采用计算流体力学软件模拟其气动性能,分析了压力峰值工况和设计工况下3个叶轮叶顶泄漏流和泄漏涡的空间发展和叶顶间隙部分静压损失以及熵分布。结果表明:直叶轮引入周向前弯后,叶顶泄漏流的卷吸能力降低,泄漏涡起源位置向远离叶片前缘的方向迁移,泄漏涡涡心径向高度得到了保持,降低了叶顶泄漏涡与主流的干涉作用;引入周向后弯后,泄漏流的卷吸能力增强,泄漏涡的起源位置向靠近叶片前缘的方向迁移,远离叶片前缘的涡心径向高度显著降低,涡核下游弥散范围扩大,增强了叶顶泄漏流与主流的干涉作用,不利于降低叶顶泄漏损失。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号