首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
This paper reports that the heat transfer mechanism of phase change in a capillary tube belongs to liquid film conduction and surface evaporation. The surface evaporation is influenced by vapor temperature, vapor‐liquid interfacial temperature, and vapor‐liquid pressure difference. In the vapor‐liquid flow mechanism, flow is effected by both the gradient of disjoining pressure, and the gradient of capillary pressure. The mechanism of vapor‐liquid interaction consists of the shear stress caused by momentum transfer owing to evaporation, and frictional shear stress due to the velocity difference between vapor and liquid. In the model presented for a capillary tube, the heat transfer, vapor‐liquid flow, and their interaction are more comprehensively considered. The thin film profile and heat transfer characteristics have close relations with a capillary radius and heat transfer power. The results of calculation indicate that the length of the evaporating interfacial region decreases to some extent with decreasing capillary radius and increasing heat transfer power. © 2002 Wiley Periodicals, Inc. Heat Trans Asian Res, 31(7): 513–523, 2002; Published online in Wiley InterScience ( www.interscience.wiley.com ).DOI 10.1002/htj.10050  相似文献   

2.
Heat regenerator occupied by regenerative materials improves thermal efficiency of regenerative combustion system through the recovery of sensible heat of exhaust gases. By using one-dimensional two-phase fluid dynamics model, the unsteady thermal flow of regenerator with spherical particles, were numerically analysed to evaluate the heat transfer and pressure drop and to suggest the parameter for designing heat regenerator. It takes about 7 h for the steady state in the thermal flow of regenerator, where heat absorption of regenerative particle is concurrent with heat desorption. The regenerative particle experiences small temperature fluctuation below 10 K during the reversing process. The thermal flow in heat regenerator varies with inlet velocity of exhaust gas and air, configuration of regenerator and diameter of regenerative particle. As the gas velocity increases with decreasing the cross-sectional area of the regenerator, the heat transfer between gas and particle enhances and pressure losses increase. As particle diameter decreases, the air is preheated higher and the exhaust gases are cooled lower with the increase of pressure losses. At the same exhaust gases temperature at the regenerator outlet, the regenerator length need to be linearly increased with inlet Reynolds number of exhaust gases. It is confirmed that inlet Reynolds number of exhaust gases should be introduced as a regenerator design parameter. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

3.
A numerical analysis for the flow and heat transfer of solid particles in moving beds of heat exchangers is presented. The solid particles pass through a bundle of heat source tubes as the result of the gravitational force. Heat energy is transferred through direct contact of particles with the heat source tubes. A viscous-plastic fluid model and a convective heat transfer model are employed in the analysis. The flow field dominantly determines the total heat transfer in the heat exchanger. As the velocities of solid particles around the heat source tubes increase, the heat transfer from the tubes also increases. Examples are presented to show the performance of the numerical model. The effect of flow on heat transfer has also been studied. © 1998 John Wiley & Sons, Ltd.  相似文献   

4.
Heat transfer coefficients of air‐cooled fins located on the outer surface of a totally enclosed induction motor were measured. It was found that the heat transfer coefficient decreases in the downstream direction in relation to the outer fins. It was also found that increasing the axial length of the fan cover (i.e., so that the fan cover overlaps the fin) increases the average heat transfer coefficient of the outer fins. Internal airflow induced by the rotor fan inside the motor end‐bracket coincides with the rotational speed of the rotor fan. Airflow velocity between the stator coil end and the housing in the motor is low, so a cooling structure with an inside ventilation passage for airflow was introduced to increase the heat transfer of the stator coil. By using an actual motor, the effect of resin (varnish) between the stator and the motor housing on the thermal‐contact conductance was determined; the thermal‐contact conductance of a motor with resin was 1.58 times higher than that of one without resin. © 2001 Scripta Technica, Heat Trans Asian Res, 31(1): 7–20, 2002  相似文献   

5.
Multiple jets are often used to obtain high heat transfer in a wide area. Heat and flow behavior of multiple jets show more complicated characteristics due to the existence of the interactions between adjoining jets, and between jets and spent flows. To clarify the influence of the flow behavior on heat transfer fields, the time and spatial heat transfer coefficients over the impingement plate were measured using an infrared radiometer when four jets impinged to the impingement plate for various jets arrangements and separating distances from jet exit to the impingement plate. The flow fields were also visualized by means of a water table. The heat transfer characteristics are made clear from the results of the instantaneous heat transfer contour or temperature fluctuation values. © 2005 Wiley Periodicals, Inc. Heat Trans Asian Res, 34(6): 419–431, 2005; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/htj.20073  相似文献   

6.
Nucleate boiling heat transfer coefficients were measured on a horizontal heated wire during the pool boiling of non‐azeotropic mixtures of ammonia/water. The experiment was carried out at pressures of 0.4 and 0.7 MPa, at heat fluxes below 2.0 × 106 W/m2, and over a range of mass fraction. The heat transfer coefficients in the mixtures were smaller than those in single‐component substances. No existing correlation is found to predict boiling heat transfer coefficients over the range of mass fraction of interest. In the mixtures of the ammonia/water, the heats of dilution and dissolution were generated near a liquid surface while vapor with a rich concentration of ammonia was condensed and then was diffused into the bulk liquid; while in most other mixtures, little heat was generated during any dilution and dissolution. In relation to the heat generated, the effect of the heats of dilution and dissolution on pressure and temperature in a system (pressure vessel) is shown herein. © 2002 Wiley Periodicals, Inc. Heat Trans Asian Res, 31(4): 272–283, 2002; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/htj.10034  相似文献   

7.
Slush hydrogen is a mixture of liquid hydrogen and solid hydrogen particles, and is being considered as a spaceplane fuel or as a means of transport for hydrogen used as a source of clean energy. This paper describes nucleate boiling heat transfer characteristics of slush hydrogen and slush nitrogen. For the visual observation of heat transfer states, a heat transfer unit was placed in a glass Dewar designed to minimize the heat loss from an atmospheric environment. The heat transfer unit used was a circular flat plate 0.025 m in diameter made of electrolytic tough pitch copper. During testing, three different orientations of the heat transfer surface were used: horizontal facing up, vertical, and horizontal facing down. Heat transfer data for the normal boiling point (NBP) of liquid hydrogen, the triple point (TP) of liquid hydrogen, the NBP of liquid nitrogen, and the TP of liquid nitrogen were obtained up to the critical heat flux (burnout). These data for slush hydrogen and nitrogen, including the results of observation of the heat transfer surface were compared. This clarified the nucleate boiling heat transfer characteristics of slush hydrogen and slush nitrogen, which have rarely been investigated. © 2002 Wiley Periodicals, Inc. Heat Trans Asian Res, 32(1): 13–28, 2003; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/htj.10068  相似文献   

8.
Heat transfer between the inner and the outer rings of an angular ball bearing is investigated experimentally and heat transport by balls is analyzed theoretically. The bearing used is lubricated by oil and rotated in the range from 600 to 4000 rpm. Considering heat generation by friction, the net heat flow between the rings is evaluated. The results show that balls are the dominant heat carrier and their conductance depends on rotational speed and thrust force. The other heat transfer route is supposed mainly to be between the rings based on the fact that its heat flow rate depends on the rotational speed. © 2002 Wiley Periodicals, Inc. Heat Trans Asian Res, 32(1): 42–57, 2003; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/htj.10070  相似文献   

9.
Knowledge of heat transfer coefficients is important in the design and operation of CFB boilers. It is the key to determining the area and the layout of the heat transfer surfaces in a CFB furnace. Local bulk density has a close relationship to the local heat transfer coefficient. Using a heat flux probe and bulk density sampling probe, the local bed to wall heat transfer coefficient in the furnace of a 75 t/h CFB boiler was measured. According to the experimental results and theoretical analysis of the facts that influence the heat transfer, the heat transfer coefficient calculation method for the CFB furnace was developed. The heat transfer surface configuration, heating condition, and the material density are considered in this method. The calculation method has been used in the design of CFB boilers with a capacity from 130 t/h to 420 t/h. © 2002 Wiley Periodicals, Inc. Heat Trans Asian Res, 31(7): 540–550, 2002; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/htj.10056  相似文献   

10.
To visualize heat transfer distributions in systems with complex internal geometries, an experimental technique using a combination of the transient method and the hysteresis effect of thermopaint was developed. A mercury compound based thermopaint was used as a temperature indicator. Features of the paint are its reusability and its hysteresis nature. Isothermal lines visualized by the thermopaint are preserved after the experiment by utilizing the hysteresis nature. Also heat transfer on those parts that are hidden behind other parts can be visualized. Effects of initial and air temperature on the measurement uncertainty were evaluated. With this method, local heat transfer coefficients were obtained on the model scroll of a single can type combustor. © 1998 Scripta Technica, Heat Trans Jpn Res, 27(3): 229–242, 1998  相似文献   

11.
A pulsating fluidized bed is operated with two sequential durations designated as an on‐period with injecting fluidization gas and an off‐period without it. The heat transfer coefficient between a vertically immersed heater and bed in a pulsating fluidized bed is measured under various pulse cycles and fluidized particles. The obtained results are compared with those in a normal fluidized bed with continuous fluidization air injection. The relationship between heat transfer coefficients and bubble characteristics, evaluated using a digital video camera, has also been investigated. For certain fluidized particles and operating pulse cycles, the fluidization of particles and the increment of heat transfer coefficients can be obtained under a mean air velocity based on a pulse cycle duration smaller than the minimum fluidization air velocity in a normal fluidized bed. Under the pulse cycles where a static bed through the whole bed is formed in the off‐period duration, the improved heat transfer rate over that in a normal fluidized bed can be measured. This may be attributed to large bubble formation. As heat transfer in the pulsating fluidized bed is obstructed with increasing time to keep a static bed due to the excessive off‐period duration, it is indicated that there is an optimum off‐period duration based on the heat transfer rate. © 2002 Wiley Periodicals, Inc. Heat Trans Asian Res, 31(4): 307–319, 2002; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/htj.10038  相似文献   

12.
Heat transfer in particulate beds has an important impact for many industrial processes as well as for the storage of particulate material. This study is aimed at modeling the granular flow and heat transfer between particles during the discharge of a silo. A numerical model based on the detection of contacts and the evolution of heat transfers in particle flow has been developed by using discrete element method (DEM). Through this study, we model the heat flows generated by friction and its transfer by conductance. Influence of the friction coefficient and discharging velocity on the granular flow and heat transfer has been investigated through some numerical examples. This modeling enables to understand better the phenomena at the contact point between particles as well as the heat transfer for a great number of particles in motion from their intrinsic mechanical properties and contact conductance.  相似文献   

13.
A noncontact optical technique for measuring the thermal contact conductance between two thin, waferlike solid samples was developed. In this technique, one solid surface is heated with a modulated laser beam; the corresponding temperature modulation of the other solid surface across their interface is monitored by using the reflectance of a probe laser beam. Each sample can become slightly bent if its edge is compressed by the sample holder, so the contact pressure between the samples (in the range of 0.8 to 10 MPa) was calculated by elastic and plastic numerical analyses. By using the calculated contact pressure, the correlation between contact pressure and thermal contact conductance could be determined more accurately. Also, the appropriate thickness of the glass plates used to fix the samples was derived by calculating the thickness where the local contact pressure is almost the same as the averaged pressure. © 2002 Wiley Periodicals, Inc. Heat Trans Asian Res, 31(6): 498–512, 2002; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/htj.10049  相似文献   

14.
Natural convective flows over upward‐facing, inclined plates were investigated experimentally, with an emphasis on the role of opposing flows that appear over the plates inclined slightly from the horizontal line. The flow fields over the plates and the surface temperatures of the heated plates were visualized with both dye and a liquid‐crystal thermometry. The results showed that both the descending and ascending flows appeared over the plates when the inclination angles of the plates were less than 15°. The two flows collided with each other at a certain distance from the plate edge, and then detached from the plate to become a thermal plume. It was found that the above distance was determined solely by the inclination angles and was independent of sizes and heat fluxes of the plates. The local heat transfer coefficients of the plates were also measured. The results showed that the heat transfer from the plate was enhanced by the occurrence of the descending flows. © 2002 Wiley Periodicals, Inc. Heat Trans Asian Res, 31(5): 362–375, 2002; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/htj.10036  相似文献   

15.
In this paper, the results of an experimental and theoretical investigation of combined heat transfer in a photovoltaic wall have been reported. The photovoltaic wall is a prototype, which is composed of two pieces of BP PV panels and a Styrofoam board, and part of the light of radiation energy from the indoor lamps can be converted into electricity. Through experiments, the performance of such a photovoltaic wall has been studied. For the convenience of the treatment of heat radiation, a model in terms of the integration of the absolute temperature has been proposed for the numerical simulation of the combined heat transfer in the test wall. By comparison, it is found that with regard to the thermal radiation of lamp surface, good agreement between the results of simulation and experimental data is obtained. © 2004 Wiley Periodicals, Inc. Heat Trans Asian Res, 33(2): 117–128, 2004; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/htj.10136  相似文献   

16.
The spontaneous movement of condensate drops by application of a bulk temperature gradient on the heat transfer surface in Marangoni condensation was investigated, with consideration for applications to heat transfer devices. In the Marangoni condensation process, the removal of condensate on the heat transfer surface is important to maintain good heat transfer. A heat transfer device, in which the liquid movement occurs without external forces such as gravity and vapor shear force, may be useful in various applications. As a result of experiments using a water–ethanol vapor mixture, the movement of droplets from the low‐temperature side to high‐temperature side could be observed on a horizontally arranged heat transfer surface. The relation between the velocity of drop movement and the gradient of surface tension was studied for different concentrations. Furthermore, the effect of inclination of the condensing surface was examined. © 2008 Wiley Periodicals, Inc. Heat Trans Asian Res, 37(7): 387–397, 2008; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/htj.20218  相似文献   

17.
A high‐temperature stainless‐steel sphere was immersed into various salt solutions to investigate the film boiling behavior at vapor film collapse. The film boiling behavior around the sphere was observed with a digital video camera. Both surface temperature of the sphere and solid–liquid contact behavior were measured. Results of the experiment showed that salt additives enhanced condensation heat transfer, and the observed vapor film was thinner. Furthermore, the frequency of direct contact between the sphere surface and coolant increased. The quenching temperature increased with increased salt concentration, and was highly correlated with ion molar concentration, which represents the density of ions regardless of the type of salt. © 2010 Wiley Periodicals, Inc. Heat Trans Asian Res; Published online in Wiley Online Library ( wileyonlinelibrary.com ). DOI 10.1002/htj.20327  相似文献   

18.
A numerical analysis based on adjoint formulation of unsteady forced convection heat transfer is proposed to generally evaluate effects of the thermal boundary condition on the heat transfer characteristics. A numerical solution of the adjoint problem enables us to predict the heat transfer characteristics, such as the total heat transfer rate or the temperature at a specific location, when the thermal boundary conditions change arbitrarily with time. Moreover, using the numerical solution of the adjoint problem, we can obtain the optimal thermal boundary conditions in both time and space to maximize the heat transfer at any arbitrary time. Numerical solutions of the adjoint problem in a lid‐driven cavity are presented to illustrate the capability of the present method. © 2002 Wiley Periodicals, Inc. Heat Trans Asian Res, 31(3): 237–247, 2002; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/htj.10032  相似文献   

19.
《Applied Thermal Engineering》2007,27(8-9):1345-1351
Simulation of countercurrent gas–solid heat exchanger using one-dimensional, two-fluid model has been carried out and predictions compared with experimental data reported in literature and found satisfactory. Effect of solid loading ratio, particle size and their interactions on heat transfer rate, temperature profile and thermal effectiveness of gas have been studied. Heat transfer rate was found to increase with increasing solid loading ratio and decreasing particle size. Higher heat recovery can be achieved for large particles at high solid loading ratios, while it can be achieved with wide range of solid loading ratios for small particles. Scope for further study is highlighted.  相似文献   

20.
This paper presents a series of experimental results on a passive augmentation technique of boiling heat transfer by supplying solid particles in liquid. A cylindrical heater 0.88 mm in diameter is placed in saturated water, in which a lot of mobile particles exist, and the nucleate and film boiling heat transfer characteristics are measured. Particle materials used were alumina, glass, and porous alumina, and the diameter ranged from 0.3 mm to 2.5 mm. Particles are fluidized by the occurrence of boiling without any additive power, and the heat transfer is augmented. The maximum augmentation ratio obtained in this experiment reaches about ten times the heat transfer coefficient obtained in liquid alone. The augmentation ratio is mainly affected by the particle material, diameter, and the height of the particle bed set at no boiling condition. The augmentation mechanism is discussed on the basis of the experimental results. © 2001 Scripta Technica, Heat Trans Asian Res, 31(1): 28–41, 2002  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号