首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An experimental solar assisted heat pump space heating system with a daily energy storage tank is designed and constructed, and its thermal performance is investigated. The heating system basically consists of flat plate solar collectors, a heat pump, a cylindrical storage tank, measuring units, and a heating room located in Gaziantep, Turkey (37.1°N). All measurements are automatically collected as a function of time by means of a measurement chain feeding to a data logger in combination with a PC. Hourly and daily variations of solar radiation, collector performance, coefficient of performance of the heat pump (COPHP), and that of the overall system (COPS) are calculated to evaluate the system performance. The effects of climatic conditions and certain operating parameters on the system performance parameters are investigated. COPHP is about 2.5 for a lower storage temperature at the end of a cloudy day and it is about 3.5 for a higher storage temperature at the end of a sunny day, and it fluctuates between these values in other times. Also, COPS turns out to be about 15–20% lower than COPHP. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

2.
This study summarizes the cooling performance of a ground‐source heat pump system which was installed in a 65‐m2 room in the Solar Energy Institute, Ege University, Izmir (568 degree‐days cooling, base: 22°C; 1226 degree‐days heating, base: 18°C) Turkey. The institute, built in 1986, has a liveable floor area of 3000 m2, and uses passive solar techniques. The heating and cooling loads of the room were, respectively, 3.8 and 4.2 kW at design conditions. The system was commissioned in May 2000 and the performance tests have been carried out since then. Based upon the measurements, the heat rejection rate to the soil with an average thermal diffusivity of 0.00375 m2h?1 in the cooling mode was found to be in average 51 W m?1 of bore depth, while the maximum entering water temperature to the unit was recorded as 35.9°C. The cooling coefficient of performance of the heat pump and the whole system was relatively low when compared to other heat pumps operating under conditions at or near design values. The primary reasons for this were discussed in detail and the potential for performance improvements was also suggested. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

3.
In this paper, an experimental performance evaluation of a direct expansion ground‐coupled heat pump (DX‐GCHP) system in heating mode is presented. The DX‐GCHP uses R134a as the refrigerant, and consists of three single U‐tube copper ground heat exchangers (GHEs) placed in three 30 m vertical boreholes. During the on–off operations from December 25, 2007, to February 6, 2008, the heat pump supplied hot water to fan‐coil at around 50.4°C, and its heating capacity was about 6.43 kW. The energy‐based heating coefficient of performance (COP) values of the heat pump and the whole system were found to be on average 3.55 and 3.28 at an evaporating temperature of 3.14°C and a condensing temperature of 53.4°C, respectively. The second law efficiency on the DX‐GCHP unit basis was around 0.36. The exergetic COP values of the heat pump and the whole system were obtained to be 0.599 and 0.553 (the reference state temperature was set equal to the average outdoor temperature of ?1.66°C during the tests), respectively. The authors also discussed some practical points such as the heat extraction rate from the ground, refrigerant charge and two possible new configurations to simultaneously deal with maldistribution and instability of parallel GHE evaporators. This paper may reveal insights that will aid more efficient design and improvement for potential investigators, designers and operators of such DX‐GCHP systems. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

4.
In this experimental study, a proportional integral derivative (PID) controlled heat pump dryer was designed and manufactured. Heat pump dryer was tested drying of hazelnut and energy analyses were made. Drying air temperatures were changed as 50,45 and 40°C in the drying system. Drying air velocities were changed as 0.25 m s?1 for 50°C, 0.32 m s?1 for 45°C and 0.38 m s?1 for 40°C. Heating coefficient of performance of whole system (COPws) of the heat pump dryer was calculated as 1.70 for 50°C, 1.58 for 45°C and 1.40 for 40°C drying air temperatures. Energy utilization ratio changed between 24 and 65% for 50°C, 17 and 63% for 45°C and 14 and 43% for 40°C drying air temperatures in the heat pump dryer. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

5.
The primary objective of a greenhouse is to produce good plant-growth conditions such as temperature and humidity. One of the hot issues for the greenhouse is to provide an appropriate heating system which can achieve favorable temperature condition and save energy. In this study, the performance of a ground-coupled multi-heat pump system for the greenhouse heating was investigated. The ground-coupled multi-heat pump system was composed of GLHX (ground loop heat exchanger) and multi-heat pump unit which had one outdoor unit and two or more indoor units. The temperature distribution within the greenhouse using the ground-coupled multi-heat pump system was represented relatively uniform comparing to when the conventional heating system and GCHP system were adopted, because the capacity of each indoor unit could be changed linearly according to the variation of load. The temperature difference between the maximum and minimum temperatures and the standard deviation of inside temperature for the greenhouse were 2.1 °C and 1.2 °C, respectively. It is necessary to develop the multi-heat pump unit which can be operated with high performance at relatively low temperature setting conditions. The system COP of the ground-coupled multi-heat pump unit decreased greatly at part load condition due to relatively high power consumption of the ground circulation pump. Therefore, it is suggested that a control algorithm of the ground circulation flow rate has to be developed to maximize energy saving by applying the ground-coupled multi-heat pump system to the greenhouse.  相似文献   

6.
The thermal performance of a chemical heat pump that uses the reaction system of calcium oxide/lead oxide/carbon dioxide, which is developed for utilization of high‐temperature heat above 800°C, is studied experimentally. The thermal performance of a packed‐bed reactor of a calcium oxide/carbon dioxide reaction system, which stores and transforms a high‐temperature heat source in the heat pump operation, is examined under various heat pump operation conditions. The energy analysis based on the experiment shows that it is possible to utilize high‐temperature heat with this heat pump. This heat pump can store heat above 850°C and then transform it into a heat above 900°C under an approximate atmospheric pressure. An applied system that combines the heat pump and a high‐temperature process is proposed for high‐efficiency heat utilization. The scale of the heat pump in the combined system is estimated from the experimental results. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

7.
This paper presents a novel air source heat pump for heating of buildings named air source heat pump with multiple parallel outdoor units (ASHPMO). Multiple outdoor units were connected in parallel with the aim of realising alternate defrosting and uninterrupted heating simultaneously. An experimental apparatus of the ASHPMO system was developed. The defrosting performance was experimentally investigated under different outdoor air temperatures, outdoor air relative humidity, and condensation temperatures, among other factors. The test results showed that the novel ASHPMO system could provide continuous heating when defrosting even under an outdoor air temperature of −10°C. Variations in compressor vapour suction and discharge pressure and temperature were observed. The minimum heating capacity could still reach 60% of that without defrosting. Under the defrosting condition with outdoor air temperature −10°C, both the heating coefficient of performance (heating COP) and total energy efficiency ratio (EER) of the system can reach to 2.0 and 2.32, respectively.  相似文献   

8.
An ejector-compression heat pump can use low-grade thermal energy in the neighbourhood of 93.3°C (200°F) to provide space cooling and heating. This paper applies the existing ejector theory to estimate the performance of an ejector heat pump system at various operating conditions. The study includes parametric, sensitivity and off-design analyses of the heat pump performance. The performance enhancement options and desired ejector geometry are also examined. Refrigerants 11, 113 and 114 are three of the halocarbons most suitable for the ejector heat pump system. The estimated coefficients of performance for a simple ejector heat pump are 0.3 for the cooling mode and 1.3 for the heating mode at a sample operating condition in which the refrigerant (R-11) boiling temperature is 93.3°C (200°F), condensing temperature 43.3°C (110°F) and evaporating temperature 10°C (50°F). A 24 per cent performance improvement is predicted for a heat pump with two-stage ejectors and regenerative heat exchangers. The off-design performance is relatively insensitive to the evaporator temperature variations.  相似文献   

9.
In this study, the performance of a reversible ground‐source heat pump coupled to a municipality water reticulation system, is compared experimentally and with simulations to a conventional air‐source heat pump for space cooling and heating. A typical municipality water reticulation system comprises hundreds of kilometres of pipes designed in loops that will ensure adequate circulation of water. This results in a substantial heat exchanger with great potential. Indirect heat transfer occurs between the refrigerant and ground via the municipality water reticulation system that acts as the water‐to‐ground heat exchanger. The experimental and simulated comparisons of the ground‐source system to the air‐source system are conducted in both the cooling and the heating cycles. Climatalogical statistics are used to calculate the capacities and coefficients of performance of the ground‐source and air‐source heat pumps. Results obtained from measurements and simulations indicate that the utilization of municipality water reticulation systems as a heat source/sink is a viable method of optimizing energy usage in the air conditioning industry, especially when used in the heating mode. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

10.
Ground source heat pump systems are becoming more and more popular, even though their high initial cost is an obstacle to their wider penetration of the heating and cooling market. The purchase of the heat pump itself is one of the dominant costs, and the heat pump selection also influences the operation costs through its coefficient of performance (COP) value. However, few studies are available on this topic. Based on 23 water–water heat pump models available on the market, a correlation was developed to estimate their purchase cost as a function of the nominal cooling load of the heat pump. These heat pumps can be used in geothermal applications as well as in other heating, ventilating, air conditioning and refrigeration (HVAC&R) systems. The correlation is valid for a nominal cooling load between 20 and 841 kW. The nominal COP of the heat pumps was found to have virtually no effect on their purchase costs. Also, two correlations were developed to relate variations of cooling power and COP to the temperature levels on both sides of the heat pump. The heating mode is also considered. The correlations are useful to estimate the required nominal size of a heat pump given design operating conditions and to optimize ground source heat pump systems from a techno‐economical standpoint. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

11.
In this study heat pump systems having different heat sources were investigated experimentally. Solar‐assisted heat pump (SAHP), ground source heat pump (GSHP) and air source heat pump (ASHP) systems for domestic heating were tested. Additionally, their combination systems, such as solar‐assisted‐ground source heat pump (SAGSHP), solar‐assisted‐air source heat pump (SAASHP) and ground–air source heat pump (GSASHP) were tested. All the heat pump systems were designed and constructed in a test room with 60 m2 floor area in Firat University, Elazig (38.41°N, 39.14°E), Turkey. In evaluating the efficiency of heat pump systems, the most commonly used measure is the energy or the first law efficiency, which is modified to a coefficient of performance for heat pump systems. However, for indicating the possibilities for thermodynamic improvement, inadequate energy analysis and exergy analysis are needed. This study presents an exergetic evaluation of SAHP, GSHP and ASHP and their combination systems. The exergy losses in each of the components of the heat pump systems are determined for average values of experimentally measured parameters. Exergy efficiency in each of the components of the heat pump systems is also determined to assess their performances. The coefficient of performance (COP) of the SAHP, GSHP and ASHP were obtained as 2.95, 2.44 and 2.33, whereas the exergy losses of the refrigerant subsystems were found to be 1.342, 1.705 and 1.942 kW, respectively. The COP of SAGSHP, SAASHP and GSASHP as multiple source heat pump systems were also determined to be 3.36, 2.90 and 2.14, whereas the exergy losses of the refrigerant subsystems were approximately 2.13, 2.996 and 3.113 kW, respectively. In addition, multiple source heat pump systems were compared with single source heat pump systems on the basis of the COP. Exergetic performance coefficient (EPC) is introduced and is applied to the heat pump systems having various heat sources. The results imply that the functional forms of the EPC and first law efficiency are different. Results show that Exloss,total becomes a minimum value when EPC has a maximum value. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

12.
The investigation presented in this article is aimed at demonstrating the technical and design feasibility of using ground-source heat pump systems in the mild climate applications for greenhouse heating, where heating requirements are dominant. An experimental comparison between a horizontal ground-source heat pump system and a vertical ground-source heat pump system was shown by focusing on the heating performance. For this purpose, an experimental set-up was constructed. The heating system mainly consists of two different ground heat exchangers, a heat pump, measuring units and a heating space of a model-sized glass greenhouse with 30 m2 located in the greenhouse location.The heating coefficient of performances of the two ground-source heat pumps (COPHP,H–V) and the overall system (COPsys,H–V) were obtained to be in the range of 3.1–3.6 for HGSHP and 3.2–3.8 for VGSHP and 2.7–3.3 for HGSHP and 2.9–3.5 for VGSHP, respectively. Although significant savings are possible with these heating systems, a substantial investment in equipment and facilities may be required. The experimental results were obtained from November to April in heating seasons of 2007–2008. The results showed that the utilization of the ground-source heat pump is suitable for greenhouse heating in this district.  相似文献   

13.
In this paper, a transcritical carbon dioxide heat pump system driven by solar‐owered CO2 Rankine cycle is proposed for simultaneous heating and cooling applications. Based on the first and second laws of thermodynamics, a theoretical analysis on the performance characteristic is carried out for this solar‐powered heat pump cycle using CO2 as working fluid. Further, the effects of the governing parameters on the performance such as coefficient of performance (COP) and the system exergy destruction rate are investigated numerically. With the simulation results, it is found that, the cooling COP for the transcritical CO2 heat pump syatem is somewhat above 0.3 and the heating COP is above 0.9. It is also concluded that, the performance of the combined transcritical CO2 heat pump system can be significantly improved based on the optimized governing parameters, such as solar radiation, solar collector efficient area, the heat transfer area and the inlet water temperature of heat exchange components, and the CO2 flow rate of two sub‐cycles. Where, the cooling capacity, heating capacity, and exergy destruction rate are found to increase with solar radiation, but the COPs of combined system are decreased with it. Furthermore, in terms of improvement in COPs and reduction in system exergy destruction at the same time, it is more effective to employ a large heat transfer area of heat exchange components in the combined heat pump system. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

14.
The use of low‐temperature heat (between 50 and 90°C) is studied to drive absorption systems in two different applications: refrigeration and heat pump cycles. Double‐ and triple‐stage absorption systems are modelled and simulated, allowing a comparison between the absorbent–refrigerant solutions H2O–NH3, LiNO3–NH3 and NaSCN–NH3. The results obtained for the double‐stage cycle show that in the refrigeration cycle the LiNO3–NH3 solution operates with a COP of 0.32, the H2O–NH3 pair with a COP of 0.29 and the NaSCN–NH3 solution with a COP of 0.27, when it evaporates at ?15°C, condenses and absorbs refrigerant at 40°C and generates vapour at 90°C. The results are presented for double‐ and triple‐stage absorption systems with evaporation temperatures ranging between ?40 and 0°C and condensation temperatures ranging from 15°C to 45°C. The results obtained for the double‐stage heat pump cycle show that the LiNO3–NH3 solution reaches a COP of 1.32, the NaSCN–NH3 pair a COP of 1.30 and the H2O–NH3 mixture a COP of 1.24, when it condenses and absorbs refrigerant at 50°C, evaporates at 0°C and generates vapour at 90°C. For the double‐ and triple‐stage cycles, the results are presented for evaporation temperatures ranging between 0 and 15°C. The minimum temperature required in the generators to operate the refrigeration and heat pump cycles are also presented. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

15.
Solar‐driven polygeneration systems are promising technologies for covering many energy demands with a renewable and sustainable way. The objective of the present work is the investigation of a trigeneration system, which is driven by solar‐dish collectors. The examined trigeneration system includes an organic Rankine cycle (ORC), which operates with toluene, and an absorption heat pump, which operates with LiBr/H2O. The absorption heat pump is fed with heat by the condenser of the ORC, which operates at medium temperature levels (120°C to 150°C). The absorption heat pump produces both useful heat at 55°C and cooling at 12°C. The ORC produces electricity, and it is fed by the solar dishes. The examined ORC is a regenerative cycle with superheating. The total analysis is performed with a developed model in Engineering Equation Solver (EES). The system is investigated parametrically for different ORC heat‐rejection temperatures, different superheating levels in the turbine inlet, and various solar‐beam irradiation levels. Furthermore, the system is investigated on a yearly basis for the climate conditions of Athens (Greece) and for Belgrade (Serbia). It is found that the yearly system energy and exergy efficiencies are 108.39% and 20.92%, respectively, for Athens, while 111.38% and 21.50%, respectively, for Belgrade. The values over 100% for the energy efficiency are explained by the existence of a heat pump in the examined configuration. For both locations, the payback period is found close to 10 years and the internal rate of return close to 10%. The final results indicate that the examined configuration is a highly efficient and viable system, which operates only with a renewable energy source.  相似文献   

16.
To evaluate the environmental impact of massive heat‐pump introduction on greenhouse gas (GHG) emissions, dynamic simulations of the overall electricity‐generation system have been performed for Belgium. The simulations are carried out with Promix, a tool that models the overall electricity‐generation system. For comparison, three heating devices are considered, namely conventional boilers, heat pumps and electrical resistance heating. The introduction of electric heating at the expense of classic heating increases the demand for electricity and generates a shift of emissions from fossil‐fuel heating systems to electrical power plants. The replaced classic fossil‐fuel‐fired heating represents emissions of about 300 kton. With regard to the heat‐pump scenarios, both direct heat‐pump heating with a coefficient of performance (COP) of 2.5 and accumulation heat‐pump heating with a COP of 5 are investigated. The results of the simulations reveal that the massive introduction of heat‐pump heating is favourable to the environment. In Belgium, the largest reductions in GHG emissions occur with heat pumps for direct heating, combined with newly commissioned combined cycle (CC) gas‐fired plants or with accumulation heat‐pump heating. These scenarios bring about overall GHG emission reductions of approximately 200 kton compared with the reference case with conventional heating for the years 2000 and 2010. The amount of additional electricity‐related emissions depends on the considered heating device. In 2010, the scenario with accumulation heat pumps results in an overall decrease of Belgian GHG emissions by 0.15% compared with the reference scenario. The expansion of the electricity‐generation system with new CC plants has an important favourable impact on GHGs as well. In most cases, the combination of higher electricity demand and the construction of new gas‐fired CC plants will lead to lower overall GHG emissions. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

17.
A thermodynamically analytical model on the two-stage compression refrigeration/heat pump system with vapor injection was derived. The optimal volume ratio of the high-pressure cylinder to the low-pressure one has been discussed under both cooling and heating conditions. Based on the above research, the prototype was developed and its experimental setup established. A comprehensive experiments for the prototype have been conducted, and the results show that, compared with the single-stage compression heat pump system, the cooling capacity and cooling COP can increase 5%–15% and 10–12%, respectively. Also, the heating capacity with the evaporating temperature ranging from 0.3 to 3 °C is 92–95% of that under the rate condition with the evaporating temperature of 7 °C, and 58% when the evaporation temperature is between −28 °C and −24 °C.  相似文献   

18.
Space heating/cooling systems account for approximately 40% of the global energy consumption. Such systems contribute to global warming by emitting 4×1010 MWh of heat and 3×1010 tons of CO2. There is a general understanding that the way to reduce global warming is a more efficient use of energy and increased use of renewable energy in all fields of the society. Ground‐coupled heating/cooling systems, which have proven to make huge contributions in reducing energy consumption in Europe and North America, is here applied for poultry industry in Syria, as an example for the Middle East. There are e.g. 13 000 chicken farms in Syria producing 172 000 tons of meat per year. This industry employs directly almost 150 000 people. The total investments in chicken farming are 130 BSP (2 B€). The annual mean air temperature in Syria is 15–18°C with winter temperatures close to freezing during two months. The chickens need a temperature of 21–35°C, depending on age, and the heating of all Syrian chicken plants consume 173×103 tons of coal (1196 GWh). In the summer time, the ambient air temperature in Syria could reach above 45°C. The chicken farms have no cooling systems since conventional cooling system is too expensive. The elevated temperature inside the farms reduces the chicken growth and lots of chicken die of overheating. The ground temperature at 10 m depth is roughly equal to the annual mean air temperature. Using the ground as a heat source means a sustainable and less expensive heating of the chicken farms. During the summer, the ground is used as a source for free cooling, i.e. used directly for cooling of the plants without any cooling machines. Current study shows the design and simulated operation of a ground‐coupled heating/cooling system for a typical chicken farm in Syria. Performed national potential study showed that the implementation of such ground coupled heating and cooling systems in the Syrian poultry sector would mean increased poultry production and considerable savings in money, energy, and the environment. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

19.
A capillary tube‐based CO2 heat pump is unique because of the transcritical nature of the system. The transcritical cycle has two independent parameters, pressure and temperature, unlike the subcritical cycle. A comparative study for various operating conditions, based on system COP and exergetic efficiency, of a capillary tube and a controllable expansion valve‐based transcritical carbon dioxide heat pump systems for simultaneous heating and cooling at 73 and 4°C, respectively, is presented here. Two optimized capillary tubes having diameter of 1.5 and 1.6 mm are compared with an equivalent controllable throttle valve. Heat transfer and fluid flow effects are included in the gas cooler and evaporator model and capillary tube employs the homogeneous flow model to simulate two‐phase flow. Subcritical and supercritical thermodynamic and transport properties of CO2 are calculated employing a precision in‐house property code. Optimization of effective distribution of total heat exchanger area ratio between gas cooler and evaporator is investigated. The exergetic efficiency is better in case of the capillary tube than that of a controllable throttle valve‐based system. Capillary tube‐based system is shown to be quite flexible regarding changes in ambient temperature, almost behaving to offer an optimal pressure control just like the controllable expansion valve yielding both, maximum system COP and maximum exergetic efficiency. Relatively at a smaller diameter, the capillary tube exhibits better exergetic efficiency. Capillary tube length is the critical parameter that influences system optimum conditions. The exergy flow diagram exhibits that compressor, gas cooler and capillary tube contribute a larger share, in that order, to system irreversibility. It is fairly established in this study that a capillary tube can be a good engineering option for small capacity systems in lieu of an expansion valve, which has been thought of as the only possible solution to attain the pressure optimization, an important feature of all transcritical CO2 systems. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

20.
Optimum performance of an endoreversible heat engine‐driven heat pump cycle, based on a combination of an absorption cycle with a vapour and ejector compression cycles is investigated. This combination increases the performance of the conventional ejector and absorption cycles and provides high performance for heating. The analysis show that the combined heat pump cycle has a significant increase in system performance over the heat engine‐driven vapour compression or absorption heat pump cycle and heat engine‐driven combined vapour compression and absorption heat pump cycle. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号