首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
以玉米秸秆类生物质为产氢原料,研究维生素B4对HAU-M1光合细菌生长和产氢过程的影响规律。结果表明,当维生素B4浓度为75 mg/L时,光合细菌生长情况最好,细菌干重最大值为0.934 g/L;维生素B4浓度为100 mg/L时,氢气累积产量达178 mL,比对照组显著提高了43.8%,对光合细菌产氢的促进效果最好;添加维生素B4对HAU-M1光合细菌发酵产氢过程的pH值影响显著,可减弱发酵液酸化,有利于光合细菌发酵产氢。显见,维生素B4对HAU-M1光合细菌生长及秸秆类生物质光合产氢具有明显的促进作用,可为进一步研究开发秸秆类生物质光合细菌发酵产氢工艺技术提供科学参考。  相似文献   

2.
发酵条件对发酵产氢细菌B49产氢的影响   总被引:7,自引:0,他引:7  
采用间歇发酵实验,研究了葡萄糖浓度、接种量、温度、氮源、不同有机底物对发酵产氢产酸细菌新菌种IM9(AF481148 in EMBL)生物产氢的影响。结果表明,接种量影响IM9的产氢;IM9生长和产氢适宜温度均为35℃;IM9不能利用无机氮源,而有机氮是IM9生长、产氢的适宜氮源;葡萄糖是IM9发酵产氢的最适宜底物,当浓度为10g/L时,IM9的葡萄糖利用率为100%,氢气得率为1.69molH2/mol glucose;此外,IM9可利用小麦、大豆、玉米、土豆及糖蜜废水和啤酒废水产氢,其中利用糖蜜废水、啤酒废水产氢分别为137.9ml H2/g COD和49.9ml H2/g COD。  相似文献   

3.
Fe对产氢发酵细菌发酵途径及产氢能力影响   总被引:12,自引:4,他引:12  
经过对20株产氢发酵细菌的静态发酵试验,结果发现加入Fe的培养液中细菌发酵由原来的丁酸型发酵过程向乙醇型发酵过程转化;在有机物发酵产氢的两个主要途径中,Fe为必要成分之一,其参与促进酶促反应的进行。在相似培养条件下,单质Fe与Fe^2 均可诱导细菌代谢向乙醇型发酵转化,其中单质Fe的作用能力优于Fe^2 ;在细菌代谢过程中,单质Fe具有提高细菌发酵产氢能力的作用。  相似文献   

4.
从连续流发酵产氢反应器(ZL9211474.1)中分离筛选出一株高效纤维素降解产氢细菌Clostridium.sp.X9,X9利用微晶纤维素(MC)作为发酵产氢底物,得到最大单位体积产氢量(YH2)、比产氢率(YH2/s)和纤维素降解率分别为780mL H2/L-culture、5.1mmol H2/g-cellulose和69.6%.采用酸、碱、氨水和酸化汽曝4种方式预处理玉米秸秆,结果表明,酸化汽曝方式可以获得最佳的预处理效果.X9利用酸化汽曝预处理的玉米秸秆发酵产氢的YH2、YH2/s和纤维素降解率分别达到730mL H2/L-cuhllre、4.3mmol H2/g-ceulllose和64.0%.这说明新菌种X9在利用玉米秸秆类生物质纤维素发酵产氢方面具有很好的应用潜力.  相似文献   

5.
研究了培养基的pH值、盐度和氮源等对聚球藻生长及自相发酵产氢的影响。发现聚球藻在弱碱性时(pH=7.5~8)不能正常生长,当pH值高于8.5时藻才能实现富集,当碱性进一步增强到pH值9.5时藻生长状态最佳。收获藻液置于黑暗厌氧条件下利用自身氢酶进行自相发酵产氢,单位干重的产氢量达到22.25mL/g。聚球藻无法适应高盐度环境,在盐度较低情况下(0.154 mmol/L)才能迅速生长,得到自发酵产氢最大值为25.68 mL/g。加入无机氮源能明显提高聚球藻的生长速率及生物质产量,但对随后产氢效果有抑制作用。  相似文献   

6.
pH值调控对发酵产氢的影响   总被引:6,自引:0,他引:6  
利用厌氧活性污泥作产氢接种物,发酵有机质产生氢气,一般是在酸性条件下进行的。以厌氧活性污泥作接种物,有机酸为基质,在厌氧、恒温25℃、不同的pH值下,启动发酵产氢,以及监测产氢过程中的pH值变化,得出pH值过高时,有大量的甲烷生成,pH值过低时,则对产氢细菌不利,难于产氢。启动发酵产氢时,pH值不宜底于4.3,较为适宜的产氢pH值范围4.5~5.5。  相似文献   

7.
试验从连续流发酵产氢反应器(ZL92114474.1)中分离筛选出一株高效纤维素降解产氢细菌Clostridium sp.X9.X9利用微晶纤维素(MC)作为发酵产氢底物,得到最大单位体积产氢量(YH2)、比产氢率(YH2/s)和纤维素降解率分别为780 mL H2/L-culture、5.1 mmol H2/g-cellulose和69.6%.采用酸、碱、氨水和酸化汽爆方式预处理玉米秸秆,结果表明,酸化汽爆方式可以获得最佳的预处理效果.X9利用酸化汽爆玉米秸秆(cSES)发酵产氢的YH2、YH2/8和纤维素降解率分别达到730 ml H2/L-culture、4.3 mmol H2/g-cellulose和64%.这说明新菌种X9在利用玉米秸秆类生物质纤维素发酵产氢方面具有很好的应用潜力.  相似文献   

8.
海洋光合菌群利用乙酸产氢的实验研究   总被引:3,自引:0,他引:3  
通过富集获得产氢海洋光合菌群,该菌群可以有效利用发酵产氢的关键副产物乙酸作为产氢碳源.温度、光照强度、起始pH和乙酸浓度都对该菌群产氢和生长有明显影响.当在30℃、4000lx光照和起始pH=8.0的条件下培养时,此光合菌群产氢量和底物转化效率较高.乙酸浓度对产氢影响巨大,低浓度乙酸的底物转化效率较高,但总产氢量不高;高浓度乙酸的底物转化效率不高,但总产氢量较高.此实验结果为海洋光合细菌与海洋发酵细菌偶联产氢提供科学参考.  相似文献   

9.
以产氧发酵细菌YUAN-3(Ethanoligenens harbinense)为研究对象,通过间歇产氢实验,考察磷酸盐的浓度对YUAN-3生长和产气的影响.研究结果表明在磷酸盐浓度小于15mmol/L时,生物量较高,细胞干重大于0.4g/L;整个发酵过程的平均产氢速率和比产氢率在磷酸盐浓度为8mmol/L时达到最大,为5.92mmol/g-干细胞·h和2.86molH2/mol-葡萄糖.  相似文献   

10.
诱变育种选育高效产氢细菌   总被引:2,自引:0,他引:2  
从自行研制的CSTR反应器中分离出一株产氢发酵细菌Ethanoligenens sp.ZGX4,以其为出发菌株,进行紫外和亚硝酸复合诱变选育,经过连续传代得到一株遗传稳定性很好的高效产氢突变株YR-3。在培养条件分别为36±1℃,初始pH为6.0,葡萄糖浓度为12g/L,其单位体积产氢量(Y_H_2)为3097.5mL/Lculture,产氢能力比对照提高70.5%,最大产氢速率为36.6mmol/g·drycell·h,比对照高出55.1%;发酵液相末端产物是以乙醇和乙酸为主的典型乙醇型发酵代谢类型。高效产氢耐酸突变体YR-3的释氢能力和产氢速率明显高于野生菌株ZGX4,显示了较强的商业应用潜力,也可为以后进一步探讨研究乙醇型细菌的制氢机制及代谢途径提供物质材料。  相似文献   

11.
The biohydrogen (H2) production in batch experiments under varying concentrations of raw and ozonated palm oil mill effluent (POME) of 5000–30,000 mg COD.L−1, at initial pH 6, under mesophilic (37 °C), thermophilic (55 °C) and extreme-thermophilic (70 °C) conditions. Effects of ozone pretreatment, substrate concentration and fermentation temperature on H2 production using mesophilic seed sludge was undertaken. The results demonstrated that H2 can be produced from both raw and ozonated POME, and the amounts of H2 production were directly increased as the POME concentrations were increased. H2 was successfully produced under the mesophilic fermentation of ozonated POME, with maximum H2 yield, and specific H2 production rate of 182 mL.g−1 CODremoved (30,000 mg COD.L−1) and 6.2 mL.h−1.g−1 TVS (25,000 mg COD.L−1), respectively. Thus, indicating that the ozone pretreatment could elevate on the biodegradability of major constituents of the POME, which significantly enhanced yields and rates of the H2 production. H2 production was not achieved under the thermophilic and extreme-thermophilic fermentation. In both fermentation temperatures with ozonated POME, the maximum H2 yield was 62 mL.g−1 CODremoved (30,000 mg COD.L−1) and 63 mL.g−1 CODremoved (30,000 mg COD.L−1), respectively. The highest efficiency of total and soluble COD removal was obtained at 44 and 37%, respectively following the mesophilic fermentation, of 24 and 25%, respectively under the thermophilic fermentation, of 32 and 20%, respectively under the extreme-thermophilic fermentation. The production of volatile fatty acids increased with an increased fermentation time and temperature in both raw and ozonated POME under all three fermentation temperatures. The accumulation of volatile fatty acids in the reactor content were mostly acetic and butyric acids. H2 fermentation under the mesophilic condition of 37 °C was the better selection than that of the thermophilic and extreme-thermophilic fermentation.  相似文献   

12.
Ground waste wheat was subjected to combined dark and light batch fermentation for hydrogen production. The dark to light biomass ratio (D/L) was changed between 1/2 and 1/10 in order to determine the optimum D/L ratio yielding the highest hydrogen formation rate and the yield. Hydrogen production by only dark and light fermentation bacteria was also realized along with the combined fermentations. The highest cumulative hydrogen formation (CHF = 76 ml), hydrogen yield (176 ml H2 g−1 starch) and formation rate (12.2 ml H2 g−1 biomass h−1) were obtained with the D/L ratio of 1/7 while the lowest CHF was obtained with the D/L ratio of 1/2. Dark–light combined fermentation with D/L ratio of 1/7 was faster as compared to the dark and light fermentations alone yielding high hydrogen productivity and reduced fermentation time. Dark and light fermentations alone also yielded considerable cumulative hydrogen, but slower than the combined fermentation.  相似文献   

13.
利用BIOF-2010型生物发酵罐等试验仪器,测定了发酵温度、原料浓度、搅拌速度、接种量和pH值等不同发酵工艺条件参数对沼液中全氮含量的影响。实验结果表明:原料浓度对全氮的影响较为明显,增大接种量可加大沼液中全氮含量的变化幅度,pH7时,测定出的全氮含量变化幅度较大。  相似文献   

14.
木质纤维素稀酸水解液乙醇发酵的新方法   总被引:7,自引:0,他引:7  
为了降低木质纤维素水解液发酵抑制剂对乙醇发酵的负影响,采用混合菌种对木质纤维素稀酸水解液乙醇发酵方式进行了研究。对批式发酵、补料批式发酵和间隔补料批式发酵3种发酵方式进行了比较。实验结果表明,间隔补料批式发酵可以有效地减弱水解液中抑制因子对菌种的影响,乙醇产量明显高于其他两种发酵方式,利用酿酒酵母(Saccaromyces cerevisiae 2.535)和嗜鞣管囊酵母(Pachysolen tannophilis ATCC 32728)混合发酵,乙醇产量最终达到14.4g/L,乙醇产率(Yp/s)为0.47g/g,相当于最大理论产率的92.2%。利用酿酒酵母和重组大肠杆菌混合菌种发酵,乙醇产量达到了14.5g/L。对木质纤维素稀酸水解液采用间隔补料批式乙醇发酵方法,可进一步减少抑制剂对乙醇发酵的影响,使发酵顺利进行。  相似文献   

15.
This article overviews reported studies on bio-hydrogen production from different raw materials by dark and photo-fermentations operated with different modes. Sequential and combined dark and photo-fermentations operated in batch, continuous and fed-batch modes were compared. Operating conditions and modes resulting in the highest hydrogen yield and formation rate were revealed. Relative advantages of sequential and combined dark and photo-fermentations were discussed. Sequential fermentation was found to be preferable due to high H2 yields and productivities. High cell density fed-batch culture with controlled feeding and simultaneous product removal was concluded to be the most suitable operation mode at the optimum environmental conditions.  相似文献   

16.
Twenty-six new data envelopment analysis (DEA) models with 55 biohydrogen production experiments categorized into three groups including dark fermentation (DF), photo fermentation (PF), and dark-photo sequential fermentation (DF-PF) technologies, are used to evaluate their biohydrogen yield efficiency. The results reveal the average yield efficiencies of DF, PF and DF-PF are 0.2844, 0.3460 and 0.7040, respectively. The most efficient overall combination of biohydrogen inputs is PhBR1/Rhodobacter capsulatus B10/Rhodobacter capsulatus in DF-PF. Statistical tests demonstrate DF-PF has statistically double the efficiency of PF and DF, and the efficiency of PF significantly exceeds that of DF, supporting some of the literature findings. A flexible DEA model must be carefully chosen when evaluating biohydrogen production. All inputs and outputs of biohydrogen statistically influenced yield efficiency to a significant level. India and Japan are the top two economies benefitting from improved biohydrogen yield efficiency. Improving biohydrogen yield efficiency can improve macroeconomic growth and develop the renewable hydrogen and biohydrogen industry.  相似文献   

17.
Microalgal biomass has recently been one of the most widely studied feedstocks for bio-hydrogen production, owing to its richness in fermentable components, e.g. polysaccharides and proteins, and high biomass productivity. In this study, biomass of microalga Chlorella sp. TISTR 8411 was converted to hydrogen through a sequential process consisting of an anaerobic solid-state fermentation (ASSF) followed by a dark fermentation. The microalga was grown photoautothrophically in 80-L rectangular glass tanks and then scaled-up to a 240-L open pond for the production of biomass. The highest biomass concentration attained was 4.45 g L−1. The biomass was harvested with over 90% flocculation efficiency at pH 11.5 and a biomass concentration of 2.6 g/L. The sequential process gave a total hydrogen yield (HY) of 16.2 mL/g-volatile-solid (VS), of which 11.6 mL/g-VS was from ASSF. The high HY obtained from the ASSF indicated that it was effective and could be integrated with a conventional hydrogen production process to improve energy recovery from biomass.  相似文献   

18.
Fermentation is an important innovation by mankind and this process is used for converting organic substrate into useful products. Using natural conditions, specifically, light and dark conditions, photo-fermentation and dark fermentation techniques can be developed and operated under controlled conditions. Generally, products such as biofuels, bioactive compounds and enzymes have been produced using the dark fermentation method. However, the major requirement for today's industralized world is biofuels in its clean and pure forms. Biohydrogen is the most efficient and cleanest form of energy produced using dark fermentation of organic substrates. Nevertheless, the quantity of biohydrogen produced via dark fermentation is low. In order to increase the product quantity and quality, several internal and external stress or alterations are made to conventional fermentation conditions. In recent times, nanotechnology has been introduced to enhance the rate of dark fermentation. Nanoparticles (NPs), specifically, inorganic NPs such as silver, iron, titanium oxide and nickel have increased the production rate of biohydrogen. Therefore, the present review focuses on exploring the potential of nanotechnology in the dark fermentation of biohydrogen production, the mechanisms involved, substrates used and changes to be made to increase the production efficiency of dark fermentation.  相似文献   

19.
The two-stage hydrogen–methane fermentation process with different patterns of recirculation was investigated. Operations with the circulation of heat-treated sludge performed considerably better than those with the recirculation of raw sludge with respect to both the hydrogen production rate and yield. In addition, the results of the batch tests demonstrated that circulated sludge was capable of consuming hydrogen under acidogenic pH while the heat-treated sludge was not. These results suggest that the recirculation of active methanogenic sludge had an inhibitive effect on the hydrogen production, which can likely be attributed to the high hydrogen-consuming activity of microorganisms present in the circulated sludge. On the other hand, operations without any sludge recirculation did not perform well in terms of hydrogen production or carbohydrates degradation compared to those with recirculation, perhaps due to a shortage of available nitrogen. This suggests that sludge recirculation in effect supplemented the NH4+ in the hydrogen reactor.  相似文献   

20.
As a renewable energy source bio-hydrogen production from lignocellulosic wastes is a promising approach which can produce clean fuel with no CO2 emissions. Utilization of agro-industrial residues in solid state fermentation (SSF) is offering a solution to solid wastes disposal and providing an economical process of value-added products such as hydrogen.In this study three different particle size of rice husk (<2000 μm, <300 μm, <74 μm) was subjected to batch SSF with a Clostridium termitidis: Clostridium intestinale ratio of 5:1. C. termitidis is a cellulolytic microorganism that has the ability to hydrolyze cellulosic substances and C. intestinale is able to grow on glucose having a potential of enhancing hydrogen production when used in the co-culture. 5 g dw rice husk with 75% humidity was used as substrate in SSF under mesophilic conditions. The highest HF Volume (29.26 mL) and the highest yield (5.9 mL H2 g−1 substrate) were obtained with the smallest particle size (<74 μm). The main metabolites obtained from the fermentation media were acetic, butyric, propionic and lactic acids. The second best production yield (3.99 mL H2 g−1 substrate) was obtained with the middle particle size (<300 μm) rice husk with a HF of 19.71 mL.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号