首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 109 毫秒
1.
The paper numerically studies the process of pressurized hydrogen release through a hole or a slit into a confined space filled with air. Based on the obtained results, three basic consequences of hydrogen release are demonstrated depending on the initial pressure of hydrogen and the distance to the obstacle: (i) hydrogen ignition before the interaction of the flow with the obstacle, (ii) hydrogen ignition after the flow interaction with the obstacle, (iii) jet flow without ignition. It is shown that ignition limits are wider when hydrogen is released through the slit compared to the case of hydrogen release through a small hole. A similar effect could be achieved by changing the geometry and volume of the vessel from which hydrogen is released. Results of this study can be applicable to the elaboration of hydrogen power engineering systems dedicated either to the combustion initiation or to the suppression of ignition of non-premixed hydrogen-air mixtures.  相似文献   

2.
The issue of spontaneous ignition of highly pressurized hydrogen release is of important safety concern, e.g. in the assessment of risk and design of safety measures. This paper reports on recent numerical investigation of this phenomenon through releases via a length of tube. This mimics a potential accidental scenario involving release through instrument line. The implicit large eddy simulation (ILES) approach was used with the 5th-order weighted essentially non-oscillatory (WENO) scheme. A mixture-averaged multi-component approach was used for accurate calculation of molecular transport. The thin flame was resolved with fine grid resolution and the autoignition and combustion chemistry were accounted for using a 21-step kinetic scheme.The numerical study revealed that the finite rupture process of the initial pressure boundary plays an important role in the spontaneous ignition. The rupture process induces significant turbulent mixing at the contact region via shock reflections and interactions. The predicted leading shock velocity inside the tube increases during the early stages of the release and then stabilizes at a nearly constant value which is higher than that predicted by one-dimensional analysis. The air behind the leading shock is shock-heated and mixes with the released hydrogen in the contact region. Ignition is firstly initiated inside the tube and then a partially premixed flame is developed. Significant amount of shock-heated air and well developed partially premixed flames are two major factors providing potential energy to overcome the strong under-expansion and flow divergence following spouting from the tube.Parametric studies were also conducted to investigate the effect of rupture time, release pressure, tube length and diameter on the likelihood of spontaneous ignition. It was found that a slower rupture time and a lower release pressure will lead to increases in ignition delay time and hence reduces the likelihood of spontaneous ignition. If the tube length is smaller than a certain value, even though ignition could take place inside the tube, the flame is unlikely to be sufficiently strong to overcome under-expansion and flow divergence after spouting from the tube and hence is likely to be quenched.  相似文献   

3.
Spontaneous ignition processes due to high pressure hydrogen releases into air are known phenomena. The sudden expansion of pressurized hydrogen into a pipe, filled with ambient air, can lead to a spontaneous ignition with a jet fire. This paper presents results of an experimental investigation of the visible flame propagation and pressure measurements in 4 mm extension tubes of up to 1 m length attached to a bulk vessel by a rupture disc. Transparent glass tubes for visual observation and shock wave pressure sensors are used in this study. The effect of the extension tube length on the development of a stable jet fire after a spontaneous ignition is discussed.  相似文献   

4.
Recent experimental observations have shown that pressurized hydrogen may be spontaneously ignited in downstream tubes of sufficient length when it is released into the air due to the rapid failure of a pressure boundary. The mixing between hydrogen and shocked air within the downstream tubes is speculated to be a key process for the occurrence of spontaneous ignition of hydrogen. A direct numerical simulation has been conducted to analyze the processes of mixing and of spontaneous ignition of hydrogen within a tube after the rupture of a disk at a bursting pressure of 86.1 atm. A realistic assumption of the geometry of the pressure boundary at the moment of its failure is used for the initial condition of the numerical simulation to properly account for its effect on the mixing process. The present simulation results show that the mixing of shocked air and expanding hydrogen is enhanced by the transient multi-dimensional shock initiated by the failure of a rupture disk and by the following interactions during the flow development through the tube, thus causing spontaneous ignition of hydrogen within the tube.  相似文献   

5.
Numerical simulations have been carried out for spontaneous ignition in the sudden release of pressurized hydrogen into air. A mixture-averaged multi-component approach was used for accurate calculation of molecular transport. Spontaneous ignition and combustion chemistry were accounted for using a 21-step kinetic scheme. To reduce false numerical diffusion, extremely fine meshes were used along with the arbitrary Lagrangian–Eulerian (ALE) method in which convective terms are solved separately from the other terms.  相似文献   

6.
运用扩散点火理论对高压氢气泄漏到下游管道内的自燃点火情况进行了分析。利用激波管流动理论讨论了氢气射流前端激波加热区域的参数变化情况,分析了前沿激波强度、均匀区压力和温度与初始压力的关系,给出了高压氢气泄漏到下游管道后,预测前沿激波强度、均匀区压力和温度的数学方程,建立了判断高压氢气泄漏到下游管道内是否发生自燃点火的函数表达式。提出了理论点火临界压力的概念,计算发现氢气的理论点火临界压力明显低于其他几种常见的气体燃料。讨论了影响泄漏自燃发生的可能因素,结果可为预防高压储氢泄漏自燃提供科学依据。  相似文献   

7.
The present paper addresses the ignition problem of a one-dimensional unsteady diffusion layer of fuel and oxidizer, undergoing volumetric expansion. The problem is applied to shock induced diffusion-ignition of pressurized fuel jets that are released into an oxidizing atmosphere. Upon the sudden release of a pressurized gaseous fuel into the ambient atmosphere through a hole, a strong shock wave forms, driven by rapid expansion of the forming jet. The model follows the thin diffusion layer at the head of the jet in Lagrangian coordinates, with its rate of expansion dictated by the local pressure evolution of the surrounding gasdynamic flow. Following the analysis of Radulescu and Law, the latter can be calculated a priori before the ignition event. Hence, the expansion rate is prescribed as a source term in our calculations of the diffusion layer. The calculations, which are performed for hydrogen and air with realistic thermo-chemical data and transport properties of the chemical species, revealed the transient events leading to ignition in this unsteady diffusion layer. Furthermore, the calculations showed that when the rate of expansion was sufficiently strong, which may occur for releases through sufficiently small holes, ignition can be prevented. This illustrates the important role that gasdynamic expansion plays on ignition phenomena. The results of the present model are found to be in very good agreement with previous numerical and experimental results of transient jet release ignition.  相似文献   

8.
Spontaneous ignition induced by high-pressure hydrogen release is one of the huge potential risks in the promotion of hydrogen energy. However, the understanding of the microscopic dynamic characteristics of spontaneous ignition, such as ignition initiation and flame development, remains unresolved. In this paper, the spontaneous ignition caused by high-pressure hydrogen release through a tube is investigated by two-dimensional numerical simulation at burst pressure ranging from 2.67 to 15 MPa. Especially, the thermal and species characteristics in hydrogen shock-induced ignition under different strengths of shock wave are discussed carefully. The results show that the stronger shock wave caused by higher burst pressure leads to larger heating area and higher heating temperature inside the tube, increasing the possibility of spontaneous ignition. The shortening effect of initial ignition time and initial ignition distance will decrease with the increase of the burst pressure. Ignition will be initiated when the temperature is raised to about 1350–1400 K under the heating effect of shock waves. It is also found that the ignition occurs under the lean-fuel condition firstly on the upper and lower walls of the tube. The flame branch after spontaneous ignition is observed in the mixing layer. Two ignition kernels show different characteristics during the process of combustion and flow. The evolution of HRR and mass fraction of key species (OH, H, HO2) are also compared to identify the flame front. The mass fraction of H has the better trend with HRR. It is suggested that H radical is a more reasonable choice as the indicator of the flame front.  相似文献   

9.
Experiments on shock waves propagation, spontaneous ignition, and flame development during high-pressure hydrogen release through tubes with symmetrical obstacles (O1-1) and asymmetrical obstacles (O1-2) are conducted. The obstacle's side is triangular with a length of 4 mm, a height of 3.6 mm, and its width is 15 mm. In the experiments, a reflected shock wave generates and propagates both upstream and downstream when the leading shock wave encounters the obstacle. At the same burst pressure, the reflected shock wave intensity in tube O1-1 is significantly greater than that in tube O1-2. Moreover, the presence of obstacles in the tube can induce spontaneous ignition. The minimum burst pressures for spontaneous ignition for tubes O1-1 and O1-2 are 2.84 MPa and 3.28 MPa respectively, lower than that for the smooth tube. Furthermore, both the initial ignition position and ignition time are greatly advanced in obstruction tubes, mainly affected by obstacle positions and burst pressures. Finally, the flame separation process near the obstacle is observed. After passing the obstacle, the flames grow rapidly in radial and axial directions on the tube sidewalls. And at the same burst pressure, the flame convergence time in tube O1-2 is usually longer than that in tube O1-1.  相似文献   

10.
The aim of this study is to gain an insight into the physical phenomena underlying the spontaneous ignition of hydrogen following a sudden release from high-pressure storage and transition to sustained jet fire. The modelling and large-eddy simulation (LES) of the spontaneous ignition dynamics in a tube with a non-inertial rupture disk separating the high-pressure hydrogen storage and the atmosphere is described. Numerical experiments confirmed that due to the stagnation conditions a chemical reaction first commences in the tube boundary layer, and subsequently propagates throughout the tube cross-section. The dynamics of flame formation outside the tube, simulated by the LES model, has reproduced the combustion patterns, including vortex induced “flame separation”, which have been experimentally observed by high-speed photography. It is concluded that the LES model can be applied for hydrogen safety engineering, e.g. for the development of innovative pressure relief devices.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号