首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An integrated scenario analysis methodology has been proposed for zero‐carbon energy system in perspectives of social‐economy, environment and technology. By using the methodology, service demands in all sectors were estimated based on social‐economic data, and then the best technology and energy mixes were obtained to meet the service demands. The methodology was applied to Japan toward zero‐carbon energy system out to the year of 2100, and three different scenarios of nuclear power development are considered in light of the Fukushima accident: (i) no further introduction of nuclear, (ii) fixed portion and (iii) no limit of nuclear. The results show that, zero‐carbon energy scenario can be attained in the year 2100 when electricity will supply 75% of total energy consumption, and three power generation scenarios were proposed, 30% renewable and 70% gas‐carbon capture and storage (CCS) in Scenario 1, respective one‐third nuclear, renewable and gas‐CCS in Scenario 2, and 60% nuclear power, 20% renewable and 10% gas‐CCS in Scenario 3. Finally, Scenario 2 is rated as the most balanced scenario by putting emphasis on the availability of diversified power source, considering the inter‐comparison of the three scenarios from the four aspects of cost, CO2 emission, risk and diversity. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

2.
The Fukushima nuclear accident in March 2011 has increased social and political reluctance to embrace nuclear power in Japan (and elsewhere). The Japanese government has thus been considering four possible future energy mixes, including a nuclear-free pathway, and three others with 10%–35% nuclear supply coupled with a larger proportion of renewable energy and fossil fuels to replace nuclear. Here we use multi-criteria decision-making analysis (MCDMA) to assess the potential negative economic (levelised cost of electricity, and energy security), environmental (greenhouse-gas emissions, land transformation, water consumption, heated water discharge, air pollution, radioactive waste, and solid waste) and social (safety issues) impacts of the four proposed pathways to determine which scenario most holistically minimises adverse future outcomes. The nuclear-free pathway has the highest overall potential for adverse outcomes (score=2.49 out of 3), and the 35% nuclear power supply option yielding the lowest negative impact score (0.74) without weightings. Despite some sensitivity to the choice of criterion weights, our analyses demonstrate clearly that from an empirical perspective, a nuclear-free pathway for Japan is the worst option to pursue. We recommend that MCDMA methodology we used for Japan can be applied to other countries to evaluate future electricity generation scenarios.  相似文献   

3.
This paper examines consumers' willingness to pay for nuclear and renewable electricity as two alternatives to fossil fuels for the reduction of greenhouse gas emissions. We conduct a choice experiment of consumer-stated preferences on the basis of an online survey in four US states and Japan after the Fukushima nuclear plant accident. First, the results suggest that US consumers' willingness to pay for a 1% decrease in greenhouse gas emissions is $0.31 per month, which is similar to the results for the US a decade ago. Japanese consumers show a slightly lower willingness to pay of $0.26 per month. Second, the average consumer in both countries expresses a negative preference for increases in nuclear power in the fuel mix (to a greater extent in Japan). Third, renewable energy sources were endorsed by both US and Japanese consumers, who show a willingness to pay $0.71 and $0.31 per month for a 1% increase in the use of renewable source energy. This study also examines the differences in respondents' characteristics. Approximately 60% of the US respondents who did not change their perception concerning the use of nuclear energy subsequent to the Fukushima nuclear crisis have almost no preference for variation in nuclear power, which is in stark contrast to the Japanese respondents' opposition to nuclear energy.  相似文献   

4.
Using representative household survey data from Japan after the Fukushima accident, we estimate peoples' willingness-to-pay (WTP) for renewable, nuclear, and fossil fuels in electricity generation. We rely on random parameter econometric techniques to capture various degrees of heterogeneity between the respondents, and use detailed regional information to assess how WTP varies with the distance to both the nearest nuclear power plant and to Fukushima. Compared to fossil fuels, we find a positive WTP for renewable and a negative WTP for nuclear fuels. These effects, in absolute terms, increase with the proximity to Fukushima.  相似文献   

5.
This paper focuses on pumped hydro energy storage (PHES) plants’ current operations after electricity system reforms and variable renewable energy (VRE) installations in Japan. PHES plants have historically been developed to create electricity demand at night in order to operate base load power plants, such as nuclear power plants, in stable conditions. Therefore, many PHES plants are located midway between nuclear power plants and large demand areas. However, all nuclear power plants had to - at least temporarily - shut down after the Great East Japan Earthquake followed by a nuclear accident at Fukushima Daiichi in 2011, and renewable energy power plants have been deployed rapidly after the introduction of a feed-in-tariff (FIT) scheme. Therefore, PHES plants are being used to mitigate fluctuations of VRE, especially in areas where renewable energy has been significantly installed. The daily highest capacity ratio of PHES plants in Kyushu area has recorded three times higher than it in the other areas where the past operating mode is still conducted. But those operations on PHES plants are simply followed as a dispatch rule of the Organization for Cross- regional Coordination of Transmission Operators (OCCTO), market-based operations have not been conducted enough yet. The market design shall be changed to harmonize VRE installation and PHES plants’ operations are necessary to make the transition from the past operating mode of PHES plants across Japan.  相似文献   

6.
日本新能源的发展趋势会对全球的能源变革产生巨大作用。从第一次石油危机至今,日本的新能源无论是总量还是在能源结构中所占的份额都有了质的飞跃,这不仅是因为新能源的技术和设备有了长足进步,更重要的是来自日本政府能源政策的支持,但2011年的福岛核危机将彻底改变日本的能源格局。日本政府宣布将中止核电发展计划,可再生能源将成为下一步能源发展战略的核心。然而日本的规模化可再生能源过程也面临着如何弥补核电站退役后的电力缺口、国土面积狭小、电网网架薄弱以及因电价过高导致的巨额补贴费用等诸多困难。与此同时也给日本带来了新的发展机遇,可再生能源将成为日本经济新的增长点。日本核危机使全球核能遭遇低潮期,而可再生能源将迎来新的发展机遇,这有可能催生第三次产业革命。同时也认识到,能源来源的过于单一化使得能源风险加剧,需要建立健全的、快速的能源应急机制,加大国际间能源合作,突破能源技术壁垒。此次日本核危机促使中国反思自身的核电发展策略。中国具有丰富的可再生能源资源,当前应抓住这一发展机遇,加大产品技术含量,切勿盲目扩大生产规模,同时拓展非主流型可再生能源生产设备市场。政府要把握整体布局,避免出现区域性生产"过度"。  相似文献   

7.
The accident in Fukushima, Japan, in March 2011 has reactivated the discussion on how to meet ambitious climate mitigation objectives as some European countries reconsider the contribution of nuclear power in their energy mix. This study evaluates the impact of nuclear power reduction in Europe on the electricity mix under carbon emission reduction scenarios while considering the availability of carbon capture and storage technological options (CCS). The potential cost of carbon reduction is also addressed using the bottom-up optimization model TIAM-FR. The results suggest that CCS technologies constitute an interesting option in a case of stringent climate targets and limited nuclear electricity. However, the unavailability of CCS technologies induces a significant increase in carbon marginal cost and energy system cost to achieve the climate policy.  相似文献   

8.
核电事故对日本未来能源发展的影响及启示   总被引:1,自引:0,他引:1  
崔成  牛建国 《中国能源》2011,33(8):14-17
东日本大地震引发的海啸造成福岛第一核电站重大泄漏事故,不仅对日本的社会与经济带来了显著的影响,也使得日本国内对核电的信任和依赖心理发生了动摇。为避免未来可能的事故发生,确保电力的安全稳定供应,日本各界展开了有关"核电是否是必须的"的大讨论,并对逐步摆脱核电的未来能源发展路径进行了探讨,其中的部分观点与思路值得我们在制定未来能源发展战略时加以借鉴。  相似文献   

9.
This paper analyzes the energy, environmental and economic influences of three electricity scenarios in Korea by 2050 using the “Long-range Energy Alternatives Planning system” (LEAP) model. The reference year was 2008. Scenarios include the baseline (BL), new governmental policy (GP) and sustainable society (SS) scenarios. The growth rate of electricity demand in the GP scenario was higher than that of the BL scenario while the growth rate in the SS scenario was lower than that of the BL scenario.Greenhouse gas emissions from electricity generation in 2050 in the BL and GP scenarios were similar with current emissions. However, emissions in 2050 in the SS scenario were about 80% lower than emissions in 2008, because of the expansion of renewable electricity in spite of the phase-out of nuclear energy.While nuclear and coal-fired power plants accounted for most of the electricity generated in the BL and GP scenarios in 2050, the SS scenario projected that renewable energy would generate the most electricity in 2050. It was found that the discounted cumulative costs from 2009 to 2050 in the SS scenario would be 20 and 10% higher than that of the BL and GP scenarios, respectively.  相似文献   

10.
2011年中国核电发展状况、未来趋势及政策建议   总被引:1,自引:1,他引:0  
肖新建 《中国能源》2012,34(2):18-23,47
2011年我国核电行业获得较快发展,核电装机及发电量显著增加,各机组总体运行稳定,核电设备国产化大步前进、装备制造能力及建设安装能力快速提升。我国实验快堆实现并网运行,先进核电技术获得突破。尽管存在日本福岛311核事故影响,我国核电发展暂时减缓。由于我们进行了认真的总结、反思及采取相应措施,总体上有利于我国核电行业的长期健康发展,未来我国核电发展预期前景依然光明。  相似文献   

11.
Leila Dagher  Isabella Ruble 《Energy》2011,36(7):4315-4326
This paper is concerned with modeling possible future paths for Lebanon’s electricity future and evaluating them. The baseline scenario (BS) reflects the business-as-usual state of affairs and thus describes the most likely evolution of the power sector in the absence of any climate change-related or other policies. Two alternative scenarios are examined in contrast to the BS; the renewable energy scenario (RES) and the natural gas scenario (NGS). Using the Long range Energy Alternatives Planning System (LEAP) software we conduct a full-fledged scenario analysis and examine the technical, economic, and environmental implications of all scenarios.From an economic standpoint as well as from an environmental perspective both alternative scenarios are superior to the baseline. Hence, the results of the simulation show that the alternative scenarios are more environmentally and economically attractive than the BS. They would help Lebanon meet its social, environmental, and economic development goals, while at the same time providing other unquantifiable benefits that are discussed further in the paper. Anticipated barriers to the shift in energy mix from conventional sources to renewable energy sources are also presented and discussed  相似文献   

12.
This study analyzes how the stock market returns, the factor loadings from the Carhart (1997) 4-factor model, and the idiosyncratic volatility of shares in energy firms have been affected by the Fukushima nuclear accident. Unlike existing studies, which provide evidence of a wealth transfer from nuclear to renewable energy firms for specific countries, we use an international sample and investigate whether changes in the regulatory environment and the firm-specific commitment to nuclear and renewable energies correlate with the capital market's reactions to the Fukushima Daiichi accident. Our findings suggest that the more a firm relies on nuclear power, the more its share price declined after the accident. A commitment to renewable energies does not prevent declines in share prices but significantly helps to reduce the increase in market beta that is associated with this event. Nuclear energy firms domiciled in countries with a higher number of regulatory interventions that were triggered by the catastrophe have lower abnormal returns than those that are domiciled elsewhere. However, as a cross-sectional analysis reveals, a stronger commitment to nuclear power is the main driver for negative stock market returns. Furthermore, nuclear energy firms domiciled in countries with stronger regulatory shifts away from nuclear energy experience significant increases in market beta and the book-to-market equity factor loading according to the Carhart (1997) 4-factor model. We conclude that capital market participants are able to differentiate between the affectedness of firms with respect to their product portfolio. Energy firms could prevent increases in market beta due to catastrophes such as the Fukushima Daiichi accident by shifting some of their energy production from nuclear to renewable or other sources.  相似文献   

13.
至本世纪前10年,核能已成为日本能源供应中不可或缺的重要因素,然而,2011年因"东日本大地震"引发的福岛核危机却动摇了日本继续发展核能的信心,不得不对现有的能源战略进行调整。福岛核危机对日本原来制定的能源战略产生了巨大影响,其中包括能源战略目标难以实现,加剧了对化石燃料的依赖;造成大量的电力缺口,总发电量减少了1/4,导致消费者用电成本急剧增加;短期内不得不增加液化天然气、原油、燃料油和煤炭等化石能源的进口量,加剧了日本能源安全的不确定性。为了缓解福岛核危机所造成的一系列负面影响并保障能源安全,日本政府重新制定了能源战略——重点集中在去核能化,去核能化是顺应民意、安抚民心,并防止核事故再次发生的根本性战略,是日本的必然选择;同时高度重视可再生能源的发展,可再生能源发电比例将由2010年的10%跃升至2030年的35%,总发电量将由2010年的1100×108kW.h提高到2030年的3000×108kW.h;大力实施节约能源战略,提出2030年电力消耗量在2010年的基础上节约1100×108kW.h,能源消耗量在2010年的基础上节约720×108L;另外,日本政府还对电力系统进行改革。结合我国的能源战略及核电发展现状,日本的能源战略调整给予我国的启示包括:要将核安全置于首要地位、加速可再生能源发展和坚持节约能源战略。  相似文献   

14.
Understanding the scale and nature of hydrogen's potential role in the development of low carbon energy systems requires an examination of the operation of the whole energy system, including heat, power, industrial and transport sectors, on an hour-by-hour basis. The Future Energy Scenario Assessment (FESA) software model used for this study is unique in providing a holistic, high resolution, functional analysis, which incorporates variations in supply resulting from weather-dependent renewable energy generators. The outputs of this model, arising from any given user-definable scenario, are year round supply and demand profiles that can be used to assess the market size and operational regime of energy technologies. FESA was used in this case to assess what - if anything - might be the role for hydrogen in a low carbon economy future for the UK.In this study, three UK energy supply pathways were considered, all of which reduce greenhouse gas emissions by 80% by 2050, and substantially reduce reliance on oil and gas while maintaining a stable electricity grid and meeting the energy needs of a modern economy. All use more nuclear power and renewable energy of all kinds than today's system. The first of these scenarios relies on substantial amounts of ‘clean coal’ in combination with intermittent renewable energy sources by year the 2050. The second uses twice as much intermittent renewable energy as the first and virtually no coal. The third uses 2.5 times as much nuclear power as the first and virtually no coal.All scenarios clearly indicate that the use of hydrogen in the transport sector is important in reducing distributed carbon emissions that cannot easily be mitigated by Carbon Capture and Storage (CCS). In the first scenario, this hydrogen derives mainly from steam reformation of fossil fuels (principally coal), whereas in the second and third scenarios, hydrogen is made mainly by electrolysis using variable surpluses of low-carbon electricity. Hydrogen thereby fulfils a double facetted role of Demand Side Management (DSM) for the electricity grid and the provision of a ‘clean’ fuel, predominantly for the transport sector. When each of the scenarios was examined without the use of hydrogen as a transport fuel, substantially larger amounts of primary energy were required in the form of imported coal.The FESA model also indicates that the challenge of grid balancing is not a valid reason for limiting the amount of intermittent renewable energy generated. Engineering limitations, economic viability, local environmental considerations and conflicting uses of land and sea may limit the amount of renewable energy available, but there is no practical limit to the conversion of this energy into whatever is required, be it electricity, heat, motive power or chemical feedstocks.  相似文献   

15.
发展核能是中国的重要出路   总被引:1,自引:0,他引:1  
叙述了由于地震引起的日本福岛核事故的教训,指出,中国能源的主要出路在于核能和可再生能源,核电厂基建费用的60%用于安全防护及核电是1种可靠的能源。  相似文献   

16.
Estonia is the only country in Europe with significant environmentally intensive oil shale-based energy production. However, the legal obligations of the EU will make substantial changes over the coming years to current electricity production technology. Increasing the use of alternative energy carriers for responding to future requirements has also been in focus. In this study, three different future electricity supply scenarios for Estonia in 2020 are considered and compared to the situation in 2002. They are based on domestic oil shale, imported natural gas, and imported nuclear power. According to the aims of the national energy policy, renewable energy sources were raised to 10% in all scenarios. Using the LCA methodology, the least damaging impact on the environment occurs in the ‘nuclear scenario’, with nuclear energy as the main energy source. The best scenario, however, depends on the weight or acceptance of accidental releases or other impacts not defined in this context. The ‘Oil shale scenario’ would be a slightly more damaging alternative than the ‘Natural gas scenario’ even if new technical solutions will remarkably improve the environmental performance of oil shale electricity production. Land use and waste disposal are crucial issues, particularly for oil shale and nuclear electricity production. However, the depletion of oil shale is not as critical an issue as the depletion of natural gas and uranium. According to the significance analysis of impact categories, climate change is the most significant impact on the environment in the scenarios. Future decisions on the development of the Estonian energy sector are most likely to be based on technological, economical and political aspects. Political aspects are likely to be the most significant. However, this type of study can give additional value to the discussion due to the increasing role of sustainability in energy issues.  相似文献   

17.
This study presents a comparative analysis of three different energy production process (EPP) scenarios for Turkey. Main goal is to incorporate the prioritization criteria for the assessment of various energy policies for power alternatives, and evaluating these policies against these criteria. The three types of EPPs reviewed in this study are: electricity production from wind farms in the future, existing coal-based thermal power plants and planned nuclear power plants. The analytical hierarchy process (AHP) is utilized to assess the main and sub-factors of EPPs. Main factors such as economic, technical, social and environmental are assigned in first level of the AHP. The importance weights of factors are produced and priority values with realistic numbers are obtained using Fuzzy-AHP Chang’s Model. Priority value for wind energy was determined as two times higher than the others when making the ultimate decision. On aggregate, importance weights of environmental (0.68) and social (0.69) factors make wind power leader. Sub-factors such as public acceptance, waste-emission and environmental impacts cause both nuclear and thermal power to have the lowest priority numbers. Additionally, the CO2 emissions trade was determined to be a very important criterion associated with both economic and environmental factors according to Kyoto Protocol. This study concludes that Turkey’s existing thermal power stations should gradually be substituted by renewable energy options according to a schedule of Turkish energy policies in future.  相似文献   

18.
王俊  陈柳钦 《中外能源》2012,17(5):25-31
能源作为日本震后经济社会发展的中长期政策大纲《日本再生基本战略》的主要支柱之一,日本能源政策的走向尤为值得关注.从短期看,日本将加大核能监管,继续扩大核电制造出口,完全弃核是不可能的;从长期看,日本会逐步降低核能在能源结构中的比例.由于核电的关停,造成日本电力供应不足,进而导致对火力发电政策的支持力度增强,未来对化石能源的依赖局面仍将持续.同时,由于核能政策的调整,一方面使得节能及提高能源使用效率成为新的支柱,另一方面可再生能源将成为重要的发展方向.近10年来,日本可再生能源占能源结构的比例一直没什么变化,约为10%,这与日本政府支持核能战略的政策导向不无关系.日本当前发展可再生能源的主要障碍是缺乏政府的长期政策扶持,其次是开发难度大、发电成本高、系统稳定性低.日本目前需要解决的课题包括全量购买制度等相关政策的导入,大幅度降低成本和解决稳定性关键技术,有效解决可再生能源利用的地域化差异等.总的来看,日本新的能源政策基本是围绕减少对核电的依赖和应对全球气候变暖来制定的.  相似文献   

19.
The power system is expected to play an important role in climate change mitigation. Variable renewable energy (VRE) sources, such as wind and solar power, are currently showing rapid growth rates in power systems worldwide, and could also be important in future mitigation strategies. It is therefore important that the electricity sector and the integration of VRE are correctly represented in energy models. This paper presents an improved methodology for representing the electricity sector in the long-term energy simulation model TIMER using a heuristic approach to find cost optimal paths given system requirements and scenario assumptions. Regional residual load duration curves have been included to simulate curtailments, storage use, backup requirements and system load factor decline as the VRE share increases. The results show that for the USA and Western Europe at lower VRE penetration levels, backup costs form the major VRE cost markup. When solar power supplies more than 30% of the electricity demand, the costs of storage and energy curtailments become increasingly important. Storage and curtailments have less influence on wind power cost markups in these regions, as wind power supply is better correlated with electricity demand. Mitigation scenarios show an increasing VRE share in the electricity mix implying also increasing contribution of VRE for peak and mid load capacity. In the current scenarios, this can be achieved by at the same time installing less capital intensive gas fired power plants. Sensitivity analysis showed that greenhouse gas emissions from the electricity sector in the updated model are particularly sensitive to the availability of carbon capture and storage (CCS) and nuclear power and the costs of VRE.  相似文献   

20.
The complementary features of low-carbon power sources are a central issue in designing energy transition policies. The French current electricity mix is characterised by a high share of nuclear power which equalled 76% of the total electric production in 2015. With the increase in intermittent renewable sources, nuclear flexibility is examined as part of the solution to balance electricity supply and demand. Our proposed methodology involves designing scenarios with nuclear and intermittent renewable penetration levels, and developing residual load duration curves in each case. The load modulation impact on the nuclear production cost is estimated.This article shows to which extent the nuclear annual energy production will decrease with high shares of intermittent renewables (down to load factors of 40% for proactive assumptions). However, the production cost increase could be compensated by progressively replacing the plants. Moreover, incentives are necessary if nuclear is to compete with combined-cycle gas turbines as its alternative back-up option.In order to reconcile the social planner with plant operator goals, the solution could be to find new outlets rather than reducing nuclear load factors. Nuclear flexibility could then be considered in terms of using its power to produce heat or hydrogen.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号