首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
孟娟  吴文潇  成蒙  关欣 《新能源进展》2019,7(2):155-160
为解决太阳能的间歇性问题,常将其与相变蓄热技术进行结合。与传统显热蓄热相比,相变蓄热可将蓄热能量提高数倍以上,具有巨大的研究和应用价值。本文总结分析了相变蓄热的传热机制及在强化太阳能相变蓄热技术上的研究手段,如变换蓄热结构、添加肋片、使用相变胶囊、充注多相变材料、蓄热材料中添加高导热物质等。分析结果显示,相变传热机制中,融化过程主要考虑对流换热,凝固过程热传导占主导;使用肋片、相变胶囊等,主要增大相变材料接触面与蓄热体的比值,进而改善传热;蓄热材料添加高导热物质,可以改善相变材料的团聚、结核及使用寿命,从而提高导热性能,其中添加泡沫金属效果最为显著。  相似文献   

2.
低熔点合金具有导热系数高,储能密度大,使用温度范围广,性能稳定等特点,是一种潜在的宽温域传热工质和中低温相变储热材料.结合低熔点合金的相变温度,相变潜热,热导率及相变稳定性等热物理性能,综述了低熔点合金相变储热材料的研究进展;介绍了液态低熔点合金传热材料的蒸汽压,表面张力,黏度及比热容等性能,以及低熔点合金在高温下与容器材料的相容性;对低熔点合金传热储热材料的下一步研究进行了展望.  相似文献   

3.
Novel high‐temperature heat transfer fluids (HTFs) with incorporated phase change nanomaterials were synthesized and tested for heat transfer and thermal energy storage. The advanced thermal properties were achieved by preparing a nanofluid consisting of core/shell silica encapsulated tin (Sn/SiO2) nanoparticles dispersed in a synthetic HTF Therminol 66 (TH66) at loadings up to 5 vol%. Tin nanoparticles were synthesized by modified polyole reduction method followed by sol–gel silica encapsulation process. The measured increase in thermal conductivity of the nanofluid (~13% at 5 vol%) was in agreement with Maxwell's effective medium theory. Latent heat of phase change during melting of Sn core added ~11% increase to the volumetric thermal energy storage of the nanofluid when cycled in between 100°C and 270°C. The value could be further improved if thermal cycling is conducted in a narrower temperature range. The experimental results demonstrated dual functionality of the engineered nanofluids as desired for Concentrated Solar Power systems. Viscosity and stability of the nanofluids as well as thermal stability of core/shell nanomaterials) were investigated in a wide temperature range to obtain a perspective on any additional pumping power requirements for the nanofluid over the base fluid. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

4.
Micro‐phase change materials (micro‐PCMs) are proposed to increase the thermal conductivity and the thermal energy storage capacity of a heat transfer fluid (HTF). In this work, we have selected dimethyl terephthalate (DMT) to be used as a PCM for performance enhancement of a synthetic oil in the temperature range of approximately 100 to 170 °C. Silicon dioxide (SiO2) was used as the microencapsulant, because of its desirable properties as containment material, including thermal stability. The SiO2‐coated DMT micro‐PCM was characterized to determine relevant properties and its suitability for HTF performance enhancement. The SiO2‐coated DMT was found to completely disperse in the synthetic oil, Therminol SP, silicone oil, at and above 100 °C. FTIR, thermal diffusivity and differential scanning calorimetry measurements were carried out on the materials, and these tests demonstrated that the coated particles can be used for HTF enhancement in the temperature range of 100–170 °C and potentially higher temperatures if pressurized pipes/vessels are utilized. Using the measured thermal diffusivity and known data for density and specific heat capacity, the thermal conductivity of the micro‐PCM was calculated. Our calculations indicate that both the thermal conductivity and the thermal energy storage heat capacity of the HTF would be enhanced by the addition of this micro‐PCM. It is expected that the thermal conductivity increase will enhance the heat transfer of the fluid when in use at temperatures above and below the melting temperature of the PCM. At the melting point, the latent heat of the PCM will increase the thermal energy storage capacity of the fluid. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

5.
添加高导热颗粒和增大换热面积是当前增强石蜡相变材料传热性能的主要研究方向。以此为基础搭建试验台结合数据采集系统对石蜡在圆管外的熔化凝固过程进行了实验测试,并对各测点的温度变化趋势进行分析,研究了添加不同纳米颗粒和加入金属肋片对换热过程的影响。结果表明:在石蜡溶液中添加纳米颗粒能够起到减小过冷度的效果同时有效增强相变材料的传热性能,添加纳米氧化铜颗粒的传热性能增强效果要优于添加氧化锌颗粒和二氧化硅颗粒;在储热系统中加入肋片能够显著提高相变储能系统的热性能,强化换热过程。  相似文献   

6.
A new kind of nano composite phase change material (NCPCM) was prepared using sodium stearoyl lactylate (SSL) as a surfactant to improve the dispersion of the Al2O3 nano-particles (with 2.5, 5, 7.5, and 10 wt.%) in paraffin with a SSL/Al2O3 mass ratio of 1:3.5. To evaluate the efficiency of the prepared PCMs, the melting rate of them at a temperature range of 50–60 °C and the effective thermal conductivity values in the solid and liquid states at a temperature range of 25–75 °C were measured using the k-type thermocouple and the transient hot wire technique, respectively. The heat storage behavior of the samples was investigated and their melting temperature, latent heat, and thermal reliability were determined using differential scanning calorimetry (DSC). Results showed that effective thermal conductivity enhancement ratios for the sample containing 10.0 wt.% nano-Al2O3 were 31% and 13% in the solid and liquid states, respectively, which are higher than those reported in similar studies. In addition, melting rate increased by 27%. As expected, all the PCMs showed good thermal reliability after 120 melting/freezing cycles. Based on our results, it may be concluded that the prepared PCMs can be regarded as effective heat storage materials for application in energy storage systems.  相似文献   

7.
In the coal chemical industry, an internal heating retort furnace is applied to the processing of low‐temperature coal pyrolysis so as to produce semi‐coke. Because the cooling water is used to reduce the temperature of semi‐coke from 500 °C to 60 °C, the waste heat carried by the semi‐coke is released. Meanwhile, the waste water of higher temperature involved with the hazardous substances is discharged into rivers or lakes, causing serious environmental pollution. In the present work, a constant temperature heat pipe is used to recover the waste heat. An iterative method is adopted to numerically solve the thermal resistances and the overall heat transfer coefficients. Results show that the conductivity thermal resistance decreases as the tube diameter increases. In the heating section, the main factors affecting the heat transfer are the thermal resistances of both the radiation heat transfer and the convective heat transfer. As the pressure climbs, the thermal resistance of radiation heat transfer increases, while the thermal resistance of convective heat transfer decreases. In addition, the overall heat transfer coefficients increase with the pressure. The heat transfer efficiency of the heat pipe is about 30%, and a higher economic benefit can be obtained.  相似文献   

8.
In the present study a new synthesis method has been introduced for the decoration of platinum (Pt) on the functionalized graphene nanoplatelet (GNP) and also highlighted the preparation method of nanofluids. GNP–Pt uniform nanocomposite was produced from a simple chemical reaction procedure, which included acid treatment for functionalization of GNP. The surface characterization was performed by various techniques such as XRD, FESEM and TEM. The effective thermal conductivity, density, viscosity, specific heat capacity and stability of functionalized GNP–Pt water based nanofluids were investigated in different instruments. The GNP–Pt hybrid nanofluids were prepared by dispersing the nanocomposite in base fluid without adding any surfactant. The examined nanofluids were stable and no significant sedimentation was observed for a long time (22 days). Thermal conductivity of GNP–Pt nanocomposite dispersed in distilled water nanofluids shows an enhancement of 17.77% at 40 °C and 0.1% weight concentration.  相似文献   

9.
Specific heat and thermal conductivity are important thermal properties of high-temperature heat transfer fluids and thermal storage materials for supercritical solar power plants. In the present work, nanofluids composed of ternary carbonate Li2CO3-K2CO3-Na2CO3 (4:4:2, mass ratio) and 1.0 wt.% carbon nanotubes (CNT) were prepared to obtain high-temperature heat transfer and storage media with enhanced specific heat and thermal conductivity. The dispersion of CNTs in the nanofluids was tuned by changing the evaporation temperature (100, 140, 180 and 220 °C) and adding surfactants such as sodium dodecyl benzene sulfonate (SDBS), sodium dodecyl sulfate (SDS), or gum Arabic (GA). The results showed that GA and SDS facilitate good dispersion of CNT in nanofluids at the evaporation temperatures of 140 °C and 180 °C, resulting in the formation of more needle-like nanostructures. The higher increase in the specific heat and thermal conductivity of the nanofluids with SDS at 500 °C was 78.3% and 149.2%, respectively. Additionally, the specific heat of as-prepared ternary carbonate nanofluids exhibits a good thermal stability after 30 cycles of thermal shock experiments.  相似文献   

10.
相变微胶囊悬浮液(MPCS)可作为热交换介质和储热流体,但其导热率较低导致其应用受到一定的限制。以水为基液使用相变微胶囊(MPCM)制备MPCS,加入氧化锌(ZnO)颗粒以提高MPCS导热率。使用旋转流变仪、差式热量扫描仪、导热仪分别测定了MPCS的黏度、相变潜热和导热系数等物理性质。设计并搭建了试验台,在内径6 mm的圆管中,使用水、MPCS以及ZnO@MPCS在层流和湍流下进行强制对流换热实验,通过对比其换热情况分析ZnO对MPCS换热特性的影响。结果表明:加入ZnO的MPCS具有良好的储热性和导热性,1%ZnO@5%MPCS导热系数较5%MPCS提高了17.9%。层流条件下MPCS的平均局部换热系数低于水,1%ZnO@5%MPCS平均局部换热系数比水高6.5%;湍流时,1%ZnO@5%MPCS在相同质量流量和功率下的平均局部换热系数相较于水提高了15.7%。  相似文献   

11.
Designing a cost-effective phase change thermal storage system involves two challenging aspects: one is to select a suitable storage material and the other is to increase the heat transfer between the storage material and the heat transfer fluid as the performance of the system is limited by the poor thermal conductivity of the latent heat storage material. When used for storing energy in concentrated solar thermal power plants, the solar field operation temperature will determine the PCM melting temperature selection. This paper reviews concentrated solar thermal power plants that are currently operating and under construction. It also reviews phase change materials with melting temperatures above 300 °C, which potentially can be used as energy storage media in these plants. In addition, various techniques employed to enhance the thermal performance of high temperature phase change thermal storage systems have been reviewed and discussed. This review aims to provide the necessary information for further research in the development of cost-effective high temperature phase change thermal storage systems.  相似文献   

12.
The results are reported of an investigation of the heat transfer characteristics and entropy generation for a graphene nanoplatelets (GNP) nanofluid with specific surface area of 750 m2/g under laminar forced convection conditions inside a circular stainless steel tube subjected to constant wall heat flux. The analysis considers constant velocity flow and a concentration range from 0.025 wt.% to 0.1 wt.%. The impact of the dispersed nanoparticles concentration on thermal properties, convective heat transfer coefficient, thermal performance factor and entropy generation is investigated. An enhancement in thermal conductivity for GNP of between 12% and 28% is observed relative to the case without nanoparticles. The convective heat transfer coefficient for the GNP nanofluid is found to be up to 15% higher than for the base fluid. The heat transfer rate and thermal performance for 0.1 wt.% of GNP nanofluid is found to increase by a factor of up to 1.15. For constant velocity flow, frictional entropy generation increases and thermal entropy generation decreases with increasing nanoparticle concentration. But, the total entropy generation tends to decrease when nanoparticles are added at constant velocity and to decrease when velocity rises. Finally, it is demonstrated that a GNP nanofluid with a concentration between 0.075 wt.% and 0.1 wt.% is more energy efficient than for other concentrations. It appears that GNP nanofluids can function as working fluids in heat transfer applications and provide good alternatives to conventional working fluids in the thermal fluid systems.  相似文献   

13.
Four samples of 1 wt% multi-walled carbon nanotube-based (MWCNT) aqueous nanofluids prepared via ultrasonication were thermally characterized. Direct imaging was done using a newly developed wet-TEM technique to assess the dispersion state of carbon nanotubes (CNT) in suspension. The effect of dispersing energy (ultrasonication) on viscosity, thermal conductivity, and the laminar convective heat transfer was studied. Results indicate that thermal conductivity and heat transfer enhancement increased until an optimum ultrasonication time was reached, and decreased on further ultrasonication. The suspensions exhibited a shear thinning behavior, which followed the Power Law viscosity model. The maximum enhancements in thermal conductivity and convective heat transfer were found to be 20% and 32%, respectively. The thermal conductivity enhancement increased considerably at temperatures greater than 24 °C. The enhancement in convective heat transfer was found to increase with axial distance. A number of mechanisms related to boundary layer thickness, micro-convective effect, particle rearrangement, possible induced convective effects due to temperature and viscosity variations in the radial direction, and the non-Newtonian nature of the samples are discussed.  相似文献   

14.
The melting and heat transfer characteristics of multiple phase change materials (PCMs) are investigated both experimentally and numerically. Multiple PCMs, which consist of three PCMs with different melting points, are filled into a rectangle-shaped cavity to serve as heat storage unit. One side of the cavity is set as heating wall. The melting rate of multiple PCMs was recorded experimentally and compared with that of single PCM for different heating temperatures. A two-dimensional mathematical model to describe the phase change heat transfer was developed and verified experimentally. The properties of multiple PCMs, including the effect of the melting point difference (combined type), thermal conductivity, and latent heat, on the heat transfer performance of the PCM were analyzed numerically. The results show that, the melting time decreases before it increases, with an increasing melting point difference for the multiple PCMs. In addition, the melting point decreases with increasing distance from the heating wall. Most of these types of multiple PCMs melt faster than the single PCM, and the multiple PCMs, with the melting point arranged as 322 K/313 K/304 K, has the shortest melting time in this study. The melting rate of the multiple PCMs, 322 K/313 K/304 K, accelerates faster than for the single PCM as the thermal conductivity, latent heat, and heating wall temperature increase. Finally, generalized results are obtained using a dimensionless analysis for both single and multiple PCMs.  相似文献   

15.
相变储能是通过相变材料吸/放热过程来实现能量储存的技术,它能够解决热量供需时间、空间和强度上的不匹配,并以其高储能密度成为储能领域的研究热点,但由于相变材料的热导率较低,使其应用受到限制。针对相变储能材料熔化/凝固过程中热导率低引起的传热速率慢的问题,从优化储能设备结构、添加剂提高相变材料热导率以及联合强化传热技术三方面综述国内外相变材料储能强化传热技术的最新进展。通过比较各种强化传热方式的优劣,实验和模拟均显示复合强化传热即可解决相变材料热导率低,又增大传热面积,从而提高相变材料的传热性能;多孔金属作为导热添加剂增强导热效果更好;并提出了相变储能强化传热技术未来需要解决的相关技术难题。  相似文献   

16.
Solar energy is receiving a lot of attention recently since it is a clean, renewable, and sustainable energy. Solar energy is used for space heating, power generation and other applications. A major limitation however is that it is available for only about 2000 h a year in many places. Therefore it is critical to find ways to store solar thermal energy for the off hours. Sensible heat of material has been used for storing thermal energy but due to material properties this type of thermal storage has limitations. Using encapsulated phase change materials is potentially a better way to store thermal energy with the associated reversible heat transfer. The present work deals with certain aspects of storing solar thermal energy in high temperature phase change materials with melting points above 400 °C. The objective is the storage of large amounts of solar energy (~600 MWh). Two kinds of encapsulated capsules are considered; zinc encapsulated in nickel and eutectic salt mixtures (57 mol% NaCl and 43 mol% MgCl2) in stainless steel encapsulation. Diffusion and phase change computations are reported here in the form of temperature profiles of the phase changing and encapsulated materials for spherical capsules. The time for heating and melting during charging (storage of thermal energy into capsulated phase change material) and the time for cooling and solidification during discharging (retrieval of thermal energy) are presented for both zinc–nickel and salt–stainless steel systems. As per expectations, the time for heat transfer is much shorter for liquid heat transfer media compared to those for gases. Moreover, the heat transfer times are shorter with smaller sizes of capsules.  相似文献   

17.
Conventional phase change materials (PCMs) are already well known for their high thermal capacity and constant working temperature for thermal storage applications. Nevertheless, their low thermal conductivity (around 1 W m−1 K−1) leads to low and decreasing heat storage and discharge powers. Up to now, this major drawback has drastically inhibited their possible applications in industrial or domestic fields. The use of graphite to enhance the thermal conductivity of those materials has been already proposed in the case of paraffin but the corresponding applications are restricted to low-melting temperatures (below 150 °C). For many applications, especially for solar concentrated technologies, this temperature range is too low. In the present paper, new composites made of salts or eutectics and graphite flakes, in a melting temperature range of 200-300 °C are presented in terms of stability, storage capacity and thermal conductivity. The application of those materials to thermal storage is illustrated through simulated results according to different possible designs. The synergy between the storage composite properties and the interfacial area available for heat transfer with the working fluid is presented and discussed.  相似文献   

18.
In a comprehensive study, the thermal conductivity, dynamic viscosity, and the rheological behavior of a SiO2/water nanofluid are investigated experimentally at the temperatures, solid concentrations, and the shear rates of 25°C to 50°C, 0% to 1.5%, and 400 to 1400(s?1), respectively. The Response Surface Methodology (RSM) is utilized to obtain regression models for the thermal conductivity and the dynamic viscosity. Subsequently, the sensitivity of the aforementioned models to 10% changes in the temperature, and the nanofluid concentration is analyzed. Afterward, Nondominated Sorting Genetic Algorithm II (NSGA‐II) is utilized to find the maximum thermal conductivity and the minimum viscosity. The nondominated optimal points are presented through a fitted correlation on a Pareto front to make the results more practical. The measurements of the investigated nanofluid could be summarized as a paper of a handbook. The workability of the investigated nanofluid is also examined in both laminar and turbulent flow regimes through analysis of the heat transfer merit graphs. To this end, the ratio of the dynamic viscosity enhancement to the thermal conductivity enhancement and the Mouromtseff number are chosen as two criteria of the laminar and turbulent flow regimes, respectively. Finally, the results are compared with those for SiO2/glycerin and SiO2/ethylene glycol nanofluids to check the workability in different base fluids. From a thermal‐efficiency point of view, the SiO2/water nanofluid is not suggested for use in both laminar and turbulent pipe flows, except in temperatures higher than 30°C and volume concentrations lower than 1% for the case of laminar flow. This is because the favorable heat transfer enhancement of the nanofluid is more than the unfavorable increase of the pumping power. From the rheological point of view, though, a SiO2/water nanofluid would be a good choice in lubricating moving surfaces for both laminar and turbulent flow regimes. It is found that in higher nanofluid concentrations, the thermal conductivity of a SiO2/water nanofluid is highly influenced by temperature. Moreover, adding nanoparticles at temperatures of 35°C to 40°C would have the highest increasing effect on the thermal conductivity. It is also revealed that increasing the temperature does not significantly affect the viscosity when 1% SiO2 nanoparticles are suspended within the water.  相似文献   

19.
Employment of latent heat storage unit (LHSU) utilizing phase change material (PCM) in a substantial scale is constrained by the poor thermal conductivity of PCMs. Future utilization of LHSU will therefore to a great extent rely on the heat transfer intensification techniques. Present research is on enhancement techniques in which heat transfer mechanism is altered without altering the mass of PCM and heat transfer surface area. The intensification mechanisms considered in the present research include imparting eccentricity to heat transfer fluid (HTF) pipe, imparting rotation to the LHSU and providing multi HTF tube. Numerical investigations are reported here towards comparative evaluation of the thermal characteristics associated with such intensification mechanisms for horizontal LHSU. In the present study stearic acid (melting point 55.7–56.6?°C) is used as PCM and water is used as HTF. Results infer that all the three mechanisms offer quicker melting rate. For the geometric configuration of LHSU considered in the present research, a reduction in melting time of 47.75% is evaluated for rotating LHSU. The rate of energy storage is higher for both eccentric and rotating LHSU. Solidification process is however not accelerated by such techniques. On the contrary, eccentric and multi HTF tube LHSU takes more time for solidification.  相似文献   

20.
一种余热利用相变石蜡储热过程的数值模拟   总被引:4,自引:0,他引:4       下载免费PDF全文
基于一种相变储热石蜡,考虑熔化过程中液相的自然对流情况,建立了矩形腔内石蜡熔化过程的数学模型,并利用该模型进行了数值模拟,分析了石蜡熔化过程中的温度场变化、流场变化、相界面移动情况。通过采用铝制翅片的方式强化传热,并分析了翅片位置对该石蜡熔化时间的影响。模拟结果表明,在y=0.1、y=5、y=10、y=15mm时,与不采用翅片相比,储热时间分别缩短了43.1%、52.0%、38.3%、22.2%。研究结果对相变储热器的优化设计有一定意义。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号