首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Emission characteristics of a turbocharged, intercooled, heavy-duty diesel engine operating on neat gas-to-liquids (GTL) and blends of GTL with conventional diesel were investigated and a comparison was made with those of diesel fuel. The results show that nitrogen oxides (NO x ), smoke, and particulate matter (PM) emissions can be decreased when operating on GTL and diesel-GTL blends. Engine emissions decrease with an increase of GTL fraction in the blends. Compared with diesel fuel, an engine operating on GTL can reduce NO x , PM, carbon monoxide (CO), and hydrocarbon (HC) by 23.7%, 27.6%, 16.6% and 12.9% in ECE R49 13-mode procedure, respectively. Engine speed and load have great influences on emissions when operating on diesel-GTL blends and diesel fuel in the turbocharged diesel engine. The study indicates that GTL is a promising alternative fuel for diesel engines to reduce emissions. Translated from Transactions of CSICE, 2006, 24(6): 489–493 [译自: 内燃机学报]  相似文献   

2.
共轨柴油机燃用天然气合成油的性能与排放特性   总被引:3,自引:0,他引:3  
对某共轨柴油机燃用天然气合成油(gas-to-liquids,GTL柴油)和国-Ⅲ柴油进行了动力性、燃油经济性和排放特性研究.结果表明:与国-Ⅲ柴油相比,共轨柴油机燃用GTL柴油时的动力性与国-Ⅲ柴油相当,燃油消耗率降低约4%,GTL 柴油的 HC、CO、Nox、PM 排放分别降低17%、8%、3%、40%,烟度排放降低35%.GTL 柴油明显改善柴油机HC和烟度排放,并能同时降低柴油机Nox和 PM 排放,是一种潜力巨大的低排放柴油清洁代用燃料.  相似文献   

3.
The effects of different ethanol–diesel blended fuels on the performance and emissions of diesel engines have been evaluated experimentally and compared in this paper. The purpose of this project is to find the optimum percentage of ethanol that gives simultaneously better performance and lower emissions. The experiments were conducted on a water-cooled single-cylinder Direct Injection (DI) diesel engine using 0% (neat diesel fuel), 5% (E5–D), 10% (E10–D), 15% (E15–D), and 20% (E20–D) ethanol–diesel blended fuels. With the same rated power for different blended fuels and pure diesel fuel, the engine performance parameters (including power, torque, fuel consumption, and exhaust temperature) and exhaust emissions [Bosch smoke number, CO, NOx, total hydrocarbon (THC)] were measured. The results indicate that: the brake specific fuel consumption and brake thermal efficiency increased with an increase of ethanol contents in the blended fuel at overall operating conditions; smoke emissions decreased with ethanol–diesel blended fuel, especially with E10–D and E15–D. CO and NOx emissions reduced for ethanol–diesel blends, but THC increased significantly when compared to neat diesel fuel.  相似文献   

4.
2-methoxyethyl acetate (MEA) can be used to decrease exhaust smoke as a new oxygenated additive of diesel. Several fuel blends which containing 10%, 15% and 20% MEA were prepared. The effects of MEA on engine’s power, fuel economy, emissions and combustion characteristics were studied on a single cylinder DI diesel engine. Under the same speed and load conditions, the maximum cylinder pressure decreases when fueled with the blends, while the ignition delays and the combustion duration becomes shorter. The engine emissions of smoke, HC and CO are reduced when MEA is added in diesel. However, MEA has a little effect on NOx emissions. When fueled with MEA15, the coefficient of light absorption of smoke opacimeter decreases about 50% with expense of 5% power, and the engine’s thermal efficiency increases about 2%.  相似文献   

5.
The present study analyzes the emission pattern of Decanol combined Jatropha biodiesel (JBD100) fueled diesel engine and compared with conventional diesel fuel (D100). Experiments were conducted in a single-cylinder, 4-stroke naturally aspirated diesel engine with an eddy current dynamometer at a constant speed of 1800 rpm. Modified fuel was prepared using a mechanical agitator, in which the Decanol concentration was varied from 10 to 20% to JBD100. The physicochemical properties of Decanol combined biodiesel are within ASTM limits. JBD100 promotes a lower level of carbon monoxide (CO) hydrocarbon (HC), and smoke emissions with notable increases in NOx and carbon dioxide (CO2) emissions. An inclusion of 20% Decanol in JBD100 reduces the NOx, Smoke, CO, and HC emission by 7.4%, 4.4%, 5.7%, and 5.9%, respectively, under full brake power.  相似文献   

6.
王爽  宋恩哲  赵国锋  姚崇  董全 《柴油机》2021,43(6):28-34
以玉柴YC6K420LN-C31型柴油机为研究对象,基于RBF(radial basis function)神经网络算法建立发动机数据模型,采用PSO(particle swarm optimization)算法进行基于模型的多目标优化研究.研究表明:RBF神经网络建立的NOx、总碳氢化合物(THC)、CO和燃油消耗率(brake specific fuel consumption,BSFC)数据模型的决定系数R2分别为0.93、0.98、0.96和0.95,模型的预测准确度均大于90%,拟合优度和预测能力满足多目标优化的需求;采用PSO算法对发动机进行多 目标优化,将适应度目标NOx、THC、CO和BSFC的权重最终均设置为0.25,生成控制图谱并进行台架验证,在推进特性工况下总排放量和油耗相比于原机平均降低了 22.9%与5.3%.  相似文献   

7.
A diesel engine was modified for natural gas operation to optimize performance using gaseous fuel. A variation of combustion ratios (CR) including 9.0:1, 9.5:1, 10.0:1 and 10.5:1 was utilized to evaluate engine performance and emissions from the same engine over the engine speeds between 1000 and 4000 rpm. Tested engine performance parameters include brake torque, brake power, specific fuel consumption (SFC) and brake thermal efficiency. Emissions tests recorded total hydrocarbon (THC), nitrogen oxides (NOx) and carbon monoxide (CO). The results showed that a CR of 9.5:1 had the highest thermal efficiency and the lowest SFC while a CR of 10:1 showed a high torque at low speed. THC emissions were directly proportional to the CR. NOx emissions increased with increasing CR and then declined after a CR of 10:1.  相似文献   

8.
An experimental study was conducted on a diesel engine fueled with ultra-low sulfur diesel (ULSD), palm methyl ester (PME), a blended fuel containing 50% by volume each of the ULSD and PME, and naturally aspirated hydrogen, at an engine speed of 1800 rev min−1 under five loads. Hydrogen was added to provide 10% and 20% of the total fuel energy. The following results are obtained with hydrogen addition. There is little change in peak in-cylinder pressure and peak heat release rate. The influence on fuel consumption and brake thermal efficiency is engine load and fuel dependent; being negative for the three liquid fuels at low engine loads but positive for ULSD and B50 and negligible for PME at medium-to-high loads. CO and CO2 emissions decrease. HC decreases at medium-to-high loads, but increases at low loads. NOx emission increases for PME only but NO2 increases for the three liquid fuels. Smoke opacity, particle mass and number concentrations are all reduced for the three liquid fuels.  相似文献   

9.
This paper presents the results of experimental work carried out to evaluate the combustion performance and exhaust emission characteristics of turpentine oil fuel (TPOF) blended with conventional diesel fuel (DF) fueled in a diesel engine. Turpentine oil derived from pyrolysis mechanism or resin obtained from pine tree dissolved in a volatile liquid can be used as a bio-fuel due to its properties. The test engine was fully instrumented to provide all the required measurements for determination of the needed combustion, performance and exhaust emission variables. The physical and chemical properties of the test fuels were earlier determined in accordance to the ASTM standards.ResultsIndicated that the engine operating on turpentine oil fuel at manufacture's injection pressure – time setting (20.5 MPa and 23° BTDC) had lower carbon monoxide (CO), unburned hydrocarbons (HC), oxides of nitrogen (NOx), smoke level and particulate matter. Further the results showed that the addition of 30% TPOF with DF produced higher brake power and net heat release rate with a net reduction in exhaust emissions such as CO, HC, NOx, smoke and particulate matter. Above 30% TPOF blends, such as 40% and 50% TPOF blends, developed lower brake power and net heat release rate were noted due to the fuels lower calorific value; nevertheless, reduced emissions were still noted.  相似文献   

10.
《能源学会志》2014,87(1):11-17
A direct injection diesel engine fueled by a diesel/biodiesel blend from waste cooking oil up to B100 (a blend of 100% biodiesel content) indicated a combustion efficiency rise by 1.8% at full load. The soot peak volume fraction was reduced by 15.2%, while CO and HC concentrations respectively decreased by 20 and 28.5%. The physical and chemical delay periods respectively diminished by 1.2 and 15.8% for engine noise to pronounce 6.5% reduction. Injection retarding by 5° reduced NOx to those original levels of B0 (a blend of zero biodiesel content) and combined respective reduction magnitudes of 10 and 7% in CO and HC at 75% load. Increasing the speed reduced CO and HC respectively by 26 and 42% at 2.36 times the droplet average strain rate. By coupling the turbulence model to the spray break-up and chemical kinetics models, increasing the injection pressure simultaneously reduced CO, HC and NOx at 17% exhaust gas recirculation ratio.  相似文献   

11.
Recently, the increasing demand for energy requires the use of alternative fuels, especially in fossil fueled power systems. As a promising alternative fuel for next-generation diesel engines that utilize fossil fuel, hydrogen fuel is one step ahead due to its positive properties. In this study, the effects of hydrogen on the performance of a diesel engine have been numerically investigated with respect to different injection ratios and timings. The numerical results of the study for 25% load conditions on a single-cylinder, four-stroke diesel engine have been validated against experimental data taken from literature and good agreement has been observed for pressure results. Emission parameters such as NOx, CO and performance parameters such as cylinder temperature, pressure, power, thermal efficiency and IMEP are presented comparatively.The results of numerical analyses show that the maximum pressure, temperature and heat release rate are observed with injection ratio of H15 and early injection timing (20° CA BTDC). Besides that, engine power, thermal efficiency and IMEP are greatly improved with increasing injection ratio and early injection timing. Although combustion chamber performance parameters improve with rising the hydrogen injection ratio, higher NOx emissions have also been detected as a negative side effect. Furthermore, while early injection timing increases diesel engine performance, it also causes an increase in NOx emissions. Therefore, precise determination of injection timing together with the optimum amount of hydrogen has revealed that it brings crucial improvement in engine performance and emissions.  相似文献   

12.
采用两级稀释取样装置和扫描迁移颗粒粒径分析仪(SMPS),研究了燃用天然气合成油(GTL)发动机排气颗粒的数密度和粒径分布特征,并同原柴油机的颗粒排放进行了比较,发现发动机燃用GTL时,中间转速(n=1400 r/min)下,排气颗粒多呈峰值粒径为50~80nm的单峰对数正态分布;高转速(n=2200r/min)下,呈分别包含核模态(峰值粒径为20~30nm)和积聚模态(峰值粒径为50~80nm)的双峰对数正态分布。而燃用柴油时,所有测试工况下,排气颗粒均呈包含核模态和积聚模态的双峰对数正态分布。与燃用柴油相比,怠速工况下,燃用GTL后总颗粒数密度和体积分数没有显著下降,而其它工况下总颗粒数密度和体积分数显著下降,其中总数密度均下降一个数量级,总体积分数下降20%~60%;燃用CTL后,排气中核模态数密度显著下降,某些工况下积聚模态数密度有所下降,这与GTL燃料中的芳香烃和硫含量均较低有关。  相似文献   

13.
Hwanam Kim  Byungchul Choi   《Renewable Energy》2008,33(10):2222-2228
In this study, the exhaust gas from a common-rail direct injection diesel engine was investigated both upstream and downstream warm-up catalytic converters (WCC). Three different types of ultra-low sulfur fuels (ethanol–diesel blend, ethanol–diesel blend with cetane improver and pure diesel) were tested in this study. The objective of the work was to study the engine performance and the formation of THC (total hydro carbon), CO (carbon monoxide), NOx (nitrogen oxides), smoke and PM (particulate matters) when using these fuels. THC and CO emissions of the ethanol–diesel blend fuels were slightly increased, and about 50–80% mean conversion efficiencies of THC and CO on catalysts were achieved in the ECE R49 13-mode cycle. Smoke was decreased by more than 42% in the entire ECE 13-mode cycles. From the measurement of scanning mobility particle sizer (SMPS) for the particle size range of 10–385 nm, the total number and total mass of the PM of the ethanol–diesel blend fuels were decreased by about 11.7–15% and 19.2–26.9%, respectively.  相似文献   

14.
Diesterol is a new specific term which denotes a mixture of fossil diesel fuel (D), vegetable oil methyl ester called biodiesel (B) and plant derived ethanol (E). In the context of the present paper, this term refers specifically to the combination of diesel fuel, bioethanol produced from potato waste, dehydrated in a vapor phase using 3A Zeolite, and sunflower methyl ester produced through transesterification. The mixture of DBE, i.e. diesterol, was patented under the Iranian patent No. 39407, dated 12-3-2007. The main purpose of this research work was to reduce engine exhaust NOx, CO, HC and smoke emissions due to application of biofuel and the increase of fuel oxygen content. It was needed to prepare suitable low cost and renewable additives. The diesterol properties such as pour point, viscosity, flash point, copper strip corrosion, ash content, sulfur content and cetane number were determined experimentally. The optimum ratio of bioethanol and biodiesel was found to be 40/60 considering fuel oxygen content, fuel price and mixture properties. Bioethanol was added to enhance the oxygenated component in the fuel, while the sunflower methyl ester was added to maintain the fuel stability at low temperatures. The parameters considered for investigation are the engine power, torque, specific fuel consumption and exhaust emissions for various mixture proportions. The experimental results showed that bioethanol plays an important role in determining the flash point of the blends. By adding 3% bioethanol to diesel and sunflower methyl ester, the flash point was reduced by 16 °C. The viscosity of the blend was also reduced by increasing the amount of bioethanol. The sulfur content of bioethanol and sunflower methyl ester is very low compared to diesel fuel. The sulfur content of diesel is 500 ppm whereas that of bioethanol and sunflower methyl ester is 0 and 15 ppm, respectively. This lower sulfur content is another factor enhancing the use of fuel blends in diesel engines. The bioethanol and sunflower methyl ester combination has sulfur content less than 20 ppm. The maximum power and torque using diesel fuel were 17.75 kW and 64.2 Nm at 3600 and 2400 rpm, respectively. Adding oxygenated compounds to the new blend seems to slightly reduce the engine power and torque and increased the average sfc for various speeds. The experimental measurement and observation of smoke concentration, NOx, CO and HC concentration indicated that both of these pollutants reduced by increasing the biofuel composition of diesterol throughout the engine operating range.  相似文献   

15.
Efficient utilization of hydrogen generated during the reactions of nano-silicon/water and nano-aluminum/water in internal combustion engine has been investigated in the current work. Engine performance and emission studies of formulated and stabilized nanoemulsion fuels (water in diesel W/D), nano-aluminum in water/diesel (W/DA) and water in nano-silicon/diesel (W/DS) have been compared with those of diesel. Experimental investigations showed reduction in brake specific fuel consumption (BSFC) by 21% and 37%; rise in brake thermal efficiency (BTE) by 16% and 14% when engine was fueled with W/DA and W/DS respectively. For nanoemulsion fuels an increase in induced power was also recorded. Brake mean effective pressure, BTE and NOx emission dropped for W/D due to reduced exhaust gas temperatures. Nevertheless due to elevated peak cylinder pressures and exhaust gas temperatures a marginal rise in NOx, CO, HC and radiative heat emissions was observed with W/DA and W/DS.  相似文献   

16.
An ultra-low sulphur diesel (ULSD) fuel and a synthetic gas-to-liquid (GTL) fuel, besides different types of standard and reformed EGR, were evaluated in a single-cylinder, direct injection, diesel engine equipped with hydrocarbon-selective catalytic reduction (HC-SCR) aftertreatment system. The results obtained were statistically analysed (at 95% statistical significance) to identify the most significant factors that affect NOx emissions and to search for the optimum operation conditions in order to minimize these emissions. For that purpose, a fully crossed factorial experimental design was used, including two different engine speeds (1200 and 1500 rpm), two engine loads (25% and 50%), and four EGR/REGR ratios (0%, 10%, 20% and 30%) resulting in almost one hundred tests. An optimal combination of fuel type, REGR type and REGR ratio was proved to reduce around 89–95% of the reference NOx emissions. In general, at 25% engine load GTL fuelling combined with the reformed EGR with the highest hydrogen content was found the most desirable, as the hydrogen sharply increased the NOx conversion in the SCR catalyst. Differently, at 50% load standard EGR was sufficient to reach high NOx reductions. These findings may be used for the implementation of a system on-board capable to switch from EGR to REGR, which will help engine manufacturers to meet the future emission regulations.  相似文献   

17.
In this study, a substitute fuel for diesel engines was produced from inedible animal tallow and its usability was investigated as pure biodiesel and its blends with petroleum diesel fuel in a diesel engine. Tallow methyl ester as biodiesel fuel was prepared by base-catalyzed transesterification of the fat with methanol in the presence of NaOH as catalyst. Fuel properties of methyl ester, diesel fuel and blends of them (5%, 20% and 50% by volume) were determined. Viscosity and density of fatty acid methyl ester have been found to meet ASTM D6751 and EN 14214 specifications. Viscosity and density of tallow methyl esters are found to be very close to that of diesel. The calorific value of biodiesel is found to be slightly lower than that of diesel. An experimental study was carried out in order to investigate of its usability as alternative fuel of tallow methyl ester in a direct injection diesel engine. It was observed that the addition of biodiesel to the diesel fuel decreases the effective efficiency of engine and increases the specific fuel consumption. This is due to the lower heating value of biodiesel compared to diesel fuel. However, the effective engine power was comparable by biodiesel compared with diesel fuel. Emissions of carbon monoxide (CO), oxides of nitrogen (NOx), sulphur dioxide (SO2) and smoke opacity were reduced around 15%, 38.5%, 72.7% and 56.8%, respectively, in case of tallow methyl esters (B100) compared to diesel fuel. Besides, the lowest CO, NOx emissions and the highest exhaust temperature were obtained for B20 among all other fuels. The reductions in exhaust emissions made tallow methyl esters and its blends, especially B20 a suitable alternative fuel for diesel and thus could help in controlling air pollution. Based on this study, animal tallow methyl esters and its blends with petroleum diesel fuel can be used a substitute for diesel in direct injection diesel engines without any engine modification.  相似文献   

18.
The aim of this study is to investigate the suitability of isobutanol–diesel fuel blends as an alternative fuel for the diesel engine, and experimentally determine their effects on the engine performance and exhaust emissions, namely break power, break specific fuel consumption (BSFC), break thermal efficiency (BTE) and emissions of CO, HC and NOx. For this purpose, four different isobutanol–diesel fuel blends containing 5, 10, 15 and 20% isobutanol were prepared in volume basis and tested in a naturally aspirated four stroke direct injection diesel engine at full -load conditions at the speeds between 1200 and 2800 rpm with intervals of 200 rpm. The results obtained with the blends were compared to those with the diesel fuel as baseline. The test results indicate that the break power slightly decreases with the blends containing up to 10% isobutanol, whereas it significantly decreases with the blends containing 15 and 20% isobutanol. There is an increase in the BSFC in proportional to the isobutanol content in the blends. Although diesel fuel yields the highest BTE, the blend containing 10% isobutanol results in a slight improvement in BTE at high engine speeds. The results also reveal that, compared to diesel fuel, CO and NOx emissions decrease with the use of the blends, while HC emissions increase considerably.  相似文献   

19.
Although compression ignition engines have high torque output and thermal efficiency, they emit lots of NOx and smoke emissions. Moreover, total number and percentage of compression ignition engine powered vehicles in road vehicles have been increasing recent years which is called as dieselisation in EEA term reports. Dieselisation is really hazardous for human life and environment. Therefore, some governments in Europe take action to forbid using diesel engine powered vehicles in city centers. Hydrogen and methane mixture which is named as hythane can be an alternative to restrict this negative situation. For this reason, 90% methane and 10% hydrogen gas mixture was used as additional fuel in diesel engine. According to obtained results, smoke emission was decreased 95.44% at the rate of 50% gaseous fuel at 2100 rpm engine speed. However, increase of THC, CO and NOx emissions with hythane addition weren't prevented. Using hythane in conventional diesel engines as dual operation mode will be solution to diminish dieselisation problem in near feature.  相似文献   

20.
Homogeneous charge compression ignition (HCCI) combustion mode provides very low NOx and soot emissions; however, it has some challenges associated with hydrocarbon (HC) emissions, fuel consumption, difficult control of start of ignition and bad behaviour to high loads. Cooled exhaust gas recirculation (EGR) is a common way to control in-cylinder NOx production in diesel and HCCI combustion mode. However EGR has different effects on combustion and emissions, which are difficult to distinguish. This work is intended to characterize an engine that has been modified from the base diesel engine (FL1 906 DEUTZ-DITER) to work in HCCI combustion mode. It shows the experimental results for the modified diesel engine in HCCI combustion mode fueled with commercial diesel fuel compared to the diesel engine mode. An experimental installation, in conjunction with systematic tests to determine the optimum crank angle of fuel injection, has been used to measure the evolution of the cylinder pressure and to get an estimate of the heat release rate from a single-zone numerical model. From these the angle of start of combustion has been obtained. The performances and emissions of HC, CO and the huge reduction of NOx and smoke emissions of the engine are presented. These results have allowed a deeper analysis of the effects of external EGR on the HCCI operation mode, on some engine design parameters and also on NOx emission reduction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号