首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
g-C3N4 (CN) has attracted extensive attention in photocatalysis field, but its weak visible light absorption and rapid charge recombination limit its application. In this, MoS2 and CoSx (ZIF67 derivatives) as cocatalyst grew on the surface of semiconductor CN in situ to construct CoSx/MoS2/CN double heterojunction. Then the activities of photocatalytic hydrogen evolution and degradation MB were researched. The hydrogen production rate of 5%CoSx/MoS2/CN-2 photocatalyst is 9800 μmol h?1 g?1 and is about 6.5 times as great as CN, 46 times than MoS2 and 98 times than CoSx, respectively. Under natural sunlight and simulated sunlight, the degradation efficiency of MB is 99.95% and 99.50% after 4 h, respectively. Catalyst characterizations have pointed out that CoSx/MoS2/CN catalyst has abundant active sites and larger specific surface area, which increase absorption of water and oxygen. At the same time, internal electric field and S vacancy enhance electrons transfer rate, which effectively inhibit the recombination of e?-h+. This work provides a new idea into the creation of steady, high-efficiency and continuable photocatalytic catalyst for visible light.  相似文献   

2.
Recently, 2D semiconductor-based heterojunctions emerge as a focal point of intensive research owing to their unique properties, including efficient charge separation and large interface areas. Herein, Ni or Co-doped black phosphorus/molybdenum disulfide (BP/MoS2–Y (Y: Ni, Co)) heterojunctions fabricate for photocatalytic H2 evolution and electrochemical nitrite sensor. Compared to the BP/MoS2, the BP/MoS2–Ni and BP/MoS2–Co exhibit enhanced H2 performance, as 6.4139 mmol h−1 g−1 and 7.4282 mmol h−1 g−1, respectively, in the presence of Eosin-Y (λ ≥ 420 nm). Furthermore, BP/MoS2–Co applies as an electrocatalyst on a GCE for the electrochemical detection of nitrite. To optimize the nitrite sensing performance of BP/MoS2–Co, the effect of the pH, amount of material, scan rates, and other conditions study in detail. The BP/MoS2–Co displays a linear response within the range of 100–2000 μM with a detection limit of 4.1 μM for DPV. This work can offer an opportunity for hydrogen systems as well as electrochemical sensor applications.  相似文献   

3.
Constructing heterostructures with efficient charge separation is a promising route to improve photocatalytic hydrogen production. In this paper, MoSx/CdS/KTaO3 ternary heterojunction photocatalysts were successfully prepared by a two-step method (hydrothermal method and photo deposition method), which improved the photocatalytic hydrogen evolution activity. The results show that the rate of hydrogen evolution for the optimized photocatalyst is 2.697 mmol g?1·h?1under visible light, which is 17 times and 2.6 times of the original CdS (0.159 mmol g?1 h?1) and the optimal CdS/KTaO3(1.033 mmol g?1 h?1), respectively, and the ternary photocatalyst also shows good stability. The improvement on photocatalytic hydrogen evolution performance can be attributed to the formation of heterojunction between the prepared composite materials, which effectively promotes the separation and migration of photo-generated carriers. Amorphous MoSx acts as an electron trap to capture photogenerated electrons, providing active sites for proton reduction. This provides beneficial enlightenment for hydrogen production by efficiently utilizing sunlight to decompose water.  相似文献   

4.
An oxygen-vacancy rich, bismuth oxide (Bi2O3) based MoS2/Bi2O3 Z-scheme heterojunction catalyst (2-BO-MS) was prepared in an autoclave hydrothermal method using ethanol and water. The performance of MoS2/Bi2O3 catalyst was examined for photocatalytic hydrogen evolution, photoelectrochemical activity, and crystal violet (CV) dye degradation by comparing with pristine Bi2O3 and MoS2. The hydrogen evolution performances of 2-BO-MS catalyst exhibited 3075.21 μmol g−1 h−1, which is 7.18 times higher than that of MoS2 (428.14 μmol g−1 h−1). The XPS, XRD and HRTEM analyses covered that the superior photocatalytic performance of 2-BO-MS catalyst might have stemmed out due to the existence of oxygen vacancies, enhanced strong interfacial interaction between MoS2 and Bi2O3 and specific surface area. The in-depth investigation has been performed for MoS2/Bi2O3 Z-scheme heterojunction using several characterization techniques. Moreover, the photocatalytic mechanism for hydrogen evolution and photodegradation were proposed based on trapping experiment results. This results acquired using MoS2/Bi2O3 Z-scheme heterojunction would be stepping stone for developing heterojunction catalyst towards attaining outstanding photocatalytic activity.  相似文献   

5.
Semiconductor-based photocatalytic hydrogen production is a promising approach to convert solar energy to renewable and clean hydrogen energy. However, development of cheap and efficient hydrogen evolution cocatalyst to replace noble metal based cocatalysts remains a challenge. Here, we report a MoSx/TiO2 nanohybrid prepared by a facile photo-assisted deposition method. The amorphous MoSx grows intimately on the single-crystalline TiO2 nanosheet with {001} facets exposed to form a heterojunction, which can not only facilitate the charge separation and transfer, but also provide plenty of active sites for hydrogen evolution reaction owing to abundant unsaturated S atoms on amorphous MoSx. As a result, the MoSx/TiO2 nanohybrid shows a remarkable enhancement in photocatalytic hydrogen evolution performance in comparison to bare TiO2 nanosheet. The best 0.5%-MoSx/TiO2 nanohybrid exhibits a hydrogen production rate at 1835.7 μmol g?1 h?1 under Xenon light irradiation, which is about 177 times higher than that of bare TiO2 nanosheet. This work paves a way for the design and construction of low-cost and noble-metal-free photocatalysts for efficient photocatalytic hydrogen evolution.  相似文献   

6.
In this study, a noble-metal-free photocatalyst, based on NiCo nanoparticles supported on montmorillonite/MoS2 heterostructure (MMT/MoS2/NiCo), was successfully synthesized and applied for photocatalytic water reduction to produce H2. Under UV–visible light irradiation, the composite showed improved photocatalytic performance for H2 evolution compared to MMT/MoS2, MMT/MoS2/Ni, MMT/NiCo, and MoS2/NiCo. The as-synthesized MMT/0.79MoS2/Ni8.14Co6.4 (0.79, 8.14 and 6.4 denote the weight ratios % of MoS2, Ni and Co in the catalyst) photocatalyst exhibited a high H2 production rate of 8.7 mmol g?1 h?1, 26.5 and 2.3 times higher than for MMT/0.79MoS2 and MMT/Ni8.14Co6.4, respectively. The enhanced photocatalytic performance was attributed to the loaded MoS2 and NiCo nanoparticles, introducing active sites, increasing the light-absorbing capacity and accelerating the charge transfer from the Eosin Y dye owing to their appropriate Fermi level energy alignment. This work presents a cost-effective method combining the 2D sheets of MMT and MoS2, and NiCo nanoparticles to form a quaternary photocatalytic system showing highly efficient hydrogen evolution from water without using noble metals.  相似文献   

7.
In photocatalytic splitting water for hydrogen evolution, narrow light response range and fast electron-hole recombination of g-C3N4 (CN) limit its photocatalytic activity. In this article, the N, S co-doped carbon dots (NSCDs) with up-converted property were loaded on CN nanosheets by thermal polymerization to obtain NSCDs/CN composite catalyst. Characterization, electrochemical researches and hydrogen evolution tests suggest that the photocatalytic activity of CN is greatly promoted by the introduction of NSCDs. Under visible and near-infrared irradiation, the hydrogen evolution rate is 5033.1 μmol g?1 h?1 of NSCDs-5/CN, which is 8.3 times higher than that of CN. The performance improvement is mainly attributed to the increased specific surface area, elevated hydrophilic surface, increased light absorption and suppressed carrier recombination of CN after the introduction of NSCDs. This work unveils the mechanism of the hydrogen evolution activity improvement in NSCDs-5/CN, and also offers a new prospect in the design of high-performance CN-based photocatalysts.  相似文献   

8.
Lead-free Cs2AgBiBr6 (CABB) double perovskite as a new-type photocatalytic material alternative to lead halide perovskites holds promise to implement the solar-H2 conversion, but the interior recombination of photo-generated carriers and thus low photocatalytic hydrogen evolution reaction (HER) rate of CABB restrict its further industrial applications. Herein, we report the composite fabrication of MoS2/CABB heterostructure for high-efficiency and durable photocatalytic HER by anchoring non-noble MoS2 onto CABB via a facile dissolution-recrystallization method. The optimized MoS2/CABB performs a visible-light HER rate of 87.5 μmol h?1 g?1 in aqueous HBr solution, ca. 20-fold compared to that of pure CABB (4.3 μmol h?1 g?1), and presents a discontinuous 500-h photocatalytic HER stability with no evident loss. The superb performance of MoS2/CABB can be ascribed to the kinetics-facilitated heterostructure consisting of stable CABB and MoS2. This work proposes a facile and versatile tactic to construct a low-cost Cs2AgBiBr6-based heterostructure for efficient and long-term photocatalytic HER.  相似文献   

9.
Two‐dimensional MoS2 has been widely used as hydrogen evolution reaction (HER) cocatalyst to load onto nanostructured semiconductors for visible light‐response photocatalytic hydrogen production. However, its another important role as light harvester because of the band‐gap tunable property and beneficial band position has been rarely exploited. Herein, few layer‐thick MoS2 nanoflakes with extended light absorption over the range of 400 to 680 nm and a photocatalytic HER rate of 0.98 mmol/h/g have been obtained. Then 7‐nm‐sized Cd0.5Zn0.5S quantum dots (QDs) are selectively grown upon ultrathin MoS2 nanoflakes for enhanced photocatalytic H2 generation. Upon the photocatalytic, light absorption, and charge transfer properties of the MoS2‐Cd0.5Zn0.5S composites evolved with the amount of MoS2 from 0 to 3 wt%, the multiple roles of MoS2 as long‐wavelength light absorber, in‐plane carrier mediator, and edge site‐active HER catalyst have been revealed. An optimum H2 generation rate of 8863 μmol/h/g and a solar to hydrogen (STH) efficiency of 2.15% have been achieved for 2 wt% MoS2‐Cd0.5Zn0.5S flakes. Such a strategy can be applied to other cocatalysts with both the light response and HER activity for efficient photocatalytic property.  相似文献   

10.
Seeking an efficient and non-precious co-catalyst for g-C3N4 (CN) remains a great demanding to achieve high photocatalytic hydrogen generation performance. Herein, a composite photocatalyst with high efficiency was prepared by modifying CN with coral-like NiSe2. The optimal hydrogen evolution rate of 643.16 μmol g?1 h?1 is from NiSe2/CN-5 under visible light. Superior light absorption and interfacial charge transfer properties including suppressed photogenerated carrier recombination and efficient separation of photogenerated electron-hole pairs have been observed, which account for the enhanced photocatalytic performance of CN.  相似文献   

11.
As a two-dimensional material, molybdenum disulfide (MoS2) exhibits great potential to replace metal platinum-based catalysts for hydrogen evolution reaction (HER). However, poor electrical conductivity and low intrinsic activity of MoS2 limit its application in electrocatalysis. Herein, we prepare a defective-MoS2/rGO heterostructures material containing 1T phase MoS2 and evaluate its HER performance. The experimental results shown that defective-MoS2/rGO heterostructures exhibits outstanding HER performance with a low overpotential at 154.77 mV affording the current density of 10 mA cm?2 and small Tafel slope of 56.17 mV dec?1. The unique HER performance of as-prepared catalyst can be attributed to the presence of 1T phase MoS2, which has more active sites and higher intrinsic conductivity. While the defects of as-prepared catalyst fully expose the active sites and further improve catalytic activity. Furthermore, the interaction between MoS2 and rGO heterostructures can accelerate electron transfer kinetics, and effectively ensure that the obtained catalyst displays excellent conductivity and structural stability, so the as-prepared catalyst also exhibits outstanding electrochemical cycling stability. This work provides a feasible and effective method for preparation of defective-MoS2/rGO heterostructures, which also supplies a new strategy for designing of highly active and conductive catalysts for HER.  相似文献   

12.
The MoS2/Ti3C2 catalyst with a unique sphere/sheet structure were prepared by hydrothermal method. The MoS2/Ti3C2 heterostructure loading 30% Ti3C2 has a maximum hydrogen production rate of 6144.7  μmol g−1 h−1, which are 2.3 times higher than those of the pure MoS2. The heterostructure maintains a high catalytic activity within 4 cycles. The heterostructure not only effectively reduce the recombination of photogenerated electrons and holes, but also provide more activation sites, which promotes the photocatalytic hydrogen evolution reaction (HER). These works can provide reference for the development of efficient catalysts in photocatalytic hydrogen evolution.  相似文献   

13.
A MoS2/graphene hybrid (MSG) is synthesized by microwave hydrothermal method. Both of the charge transfer resistance and the photocurrent are tuned in graphene modified MoS2 by enhancing photocatalytic nature, where the charge transfer resistance significantly decreases from 36,000 Ω–8.49 Ω and the photocurrent promotes from 0.29 mA cm?2 to 16.47 mA cm?2. In this article, the result reveals that the appropriate modification of graphene can reach the maximum yield of hydrogen gas. In addition, the appropriate conditions, such as the concentration of 0.32 M formic acid and the MoS2 photocatalyst with 0.8 wt% graphene (MSG0.8) dose of 0.013 g L?1, can complete the outstanding photocatalytic hydrogen evolution, where the hydrogen evolution using MSG0.8 composite photocatalyst has the maximum yield of 667.2 μmol h?1 g?1.  相似文献   

14.
Electrocatalytic materials for hydrogen evolution reaction are crucial in water splitting. Developing low‒cost and highly active catalyst remains an enormous challenge. Herein, we reported a simple approach to synthesize a molybdenum disulfide/micrometer‒scale biomass carbon tube matrix (BCTM) which is derived from available and accessible plant wild celery. Molybdenum disulfide (MoS2) nanosheet could be well dispersed on the BCTM to form porous structure, while the BCTM can enhance the conductivity of MoS2 nanosheet. The synergistic effects between the MoS2 nanosheet and BCTM contribute to high hydrogen evolution reaction activity. MoS2/BCTM shows admirable catalytic ability with a low overpotential of 176 mV at 10 mA cm−2, a small Tafel slope 51 mV·dec−1, and outstanding stability over 2000 cycles under acidic conditions. This novel strategy provides a low‒cost route to synthesize excellent MoS2‒based catalyst, which may widely apply in the fields of electrocatalysis and photocatalysis.  相似文献   

15.
This study focused on the large band gap of TiO2 for its use as a photocatalyst under light emitting diode (LED) light irradiation. The photocatalytic activities of core–shell structured Au@TiO2 nanoparticles (NPs), nitrogen doped Au@TiO2 NPs, and Au@TiO2/rGO nanocomposites (NCs) were investigated under various light intensities and sacrificial reagents. All the materials showed better photocatalytic activity under white LED light irradiation than under blue LED light. The N-doped core–shell structured Au@TiO2 NPs (Au@N–TiO2) and Au@TiO2/rGO NCs showed enhanced photocatalytic activity with an average H2 evolution rate of 9205 μmol h?1g?1 and 9815 μmol h?1g?1, respectively. All these materials showed an increasing rate of hydrogen evolution with increasing light intensity and catalyst loading. In addition, methanol was more suitable as a sacrificial reagent than lactic acid. The rate of hydrogen evolution increased with increasing methanol concentration up to 25% in DI water and decreased at higher concentrations. Overall, Au@TiO2 core–shell-based nanocomposites can be used as an improved photocatalyst in photocatalytic hydrogen production.  相似文献   

16.
A binary heterostructured CdS/MoS2 flowerlike composite photocatalysts was synthesized via a simple one-pot hydrothermal method. This photocatalyst demonstrated higher photocatalytic hydrogen production activity than pure MoS2. The heterojunction formed between MoS2 and CdS seems to promote interfacial charge transfer (IFCT), suppress the recombination of photogenerated electron–hole pairs, and enhance the hydrogen generation. Based on the good match between the conduction band (CB) edge of CdS and that of MoS2, electrons in the CB of CdS can be transferred to MoS2 easily through the heterojunction between them, which prevents the accumulation of electrons in the CB of CdS, inhibiting photocorrosion itself and greatly enhancing stability of catalyst. Hydrogen evolution reaction (HER) using Na2S/Na2SO3 or glucose as sacrificial agents in aqueous solution was investigated. The ratio between CdS and MoS2 plays an important role in the photocatalytic hydrogen generation. When the ratio between CdS and MoS2 reaches 40 wt%, the photocatalyst showed a superior H2 evolution rate of 55.0 mmol g−1 h−1 with glucose as sacrificial agent under visible light, which is 1.2 times higher than using Na2S/Na2SO3 as sacrificial agent. Our experimental results demonstrate that MoS2-based binary heterostructured composites are promising for photocorrosion inhibition and highly efficient H2 generation.  相似文献   

17.
Cu/TiO2 was modified by adding Rh as co-catalyst and used as a highly efficient photocatalyst for the hydrogen evolution reaction. A low amount of Rh was loaded onto Cu/TiO2 by the deposition-precipitation with urea (DPU) method to observe the effect on the hydrogen production displayed by different samples. The Rh–Cu/TiO2 oxide structure exhibited a remarkably high photocatalytic hydrogen evolution performance, which was about twofold higher than that of the Cu/TiO2 monometallic photocatalyst. This outstanding performance was due to the efficient charge carrier transfer as well as to the delayed electron-hole recombination rate caused by the addition of Rh. The influence of the different parameters of the photocatalyst synthesis and reaction conditions on the photocatalytic activity was investigated in detail. Hydrogen evolution was studied using methanol, ethanol, 2-propanol and butanol as scavengers with an alcohol:water ratio of 20:80. The methanol-water system, which showed the highest hydrogen production, was studied under 254, 365 and 450 nm irradiation; Rh–Cu/TiO2 showed high photocatalytic activity with H2 production rates of 9260, 5500, and 1940 μmol h?1 g?1, respectively. The Cu–Rh/TiO2 photocatalyst was active under visible light irritation due to its strong light absorption in the visible region, low band gap value and ability to reduce the electron (e?) and hole (h+) recombination.  相似文献   

18.
Although black phosphorous (BP) and its derived materials have shown great potential for application in photocatalytic H2 evolution reaction (HER), their HER activity and stability still remains unsatisfied mainly due to the insufficient charge separation, the lack of surface active sites, and the defect-riched nature of BP. Herein, we report that BP nanosheets decorated with in situ grown Pt (BP NSs/Pt) could act as a highly efficient catalyst for photocatalytic H2 evolution in an Erythrosin B (ErB)-sensitized system under visible light irradiation (≥450 nm) in the presence of triethanolamine (TEOA) as sacrificial electron donor. It is found that BP NSs can provide large surface area for the confined growth of Pt nanoparticles with a high dispersion and a reduced size but also stabilize the loaded Pt nanoparticles by covalent bonds at the BP NSs/Pt interfaces. Moreover, BP NSs offer a fast electron transfer pathway to facilitate the photocatalytic HER over in situ grown Pt catalyst. As a result, BP NSs/Pt catalyst exhibits ∼6 times higher H2 evolution activity than free Pt nanoparticles and an apparent quantum yield (AQY) of 0.57% at 500 nm irradiation in ErB-TEOA system. This work indicates the potential of BP NSs as an effective 2D matrix to construct numerous high performance photocatalysts and photocatalytic systems.  相似文献   

19.
Electrocatalytic hydrogen evolution reaction (HER) is one of the green and effective method to produce clean hydrogen energy. However, the development of non-Pt HER catalysts with excellent catalytic activity and long-term stability still remains a great challenge. Herein, a vertically aligned core-shell structure material with hollow polypyrrole (PPy) nanowire as a core and Ru-doped MoS2 (Ru–MoS2) nanosheets as a shell is firstly reported as a highly efficient and ultra-stable catalyst for HER in alkaline solutions. Results indicate that Ru–MoS2@PPy catalyst demands a low overpotential of 37 mV at 10 mA cm?2. In addition, the overpotential at 100 mA cm?2 is 157 mV and it is almost unchanged after 40,000 cyclic voltammetry cycles. The existence of PPy core not only ensures the vertical growth of MoS2 nanosheets to expose more edge sites, but also promotes the rapid transfer of electrons, contributing to the improvement of catalytic activity. More importantly, the strong interface interaction between MoS2 and PPy prevents the collapse of the vertical structure of MoS2 sheets in the electrocatalytic process and greatly enhances the stability of catalysts, which offers an effective strategy to design and synthesize the HER catalysts with superior catalytic stability.  相似文献   

20.
In this paper, a novel 2D bubble-like g-C3N4 (B–CN) with a highly porous and crosslinked structure is successfully synthesized via a cost-effective bottom-up process. The as-prepared B–CN photocatalyst delivers a considerably expanded specific surface area and increased active sites. Moreover, the 2D bubble-like structure can afford shortened diffusion paths for both photogenerated charge carriers and reactants. As a result, the photocatalytic H2 evolution rate of B–CN reached 268.9 μmol g?1 h?1, over 5 times more than that of bulk C3N4. The Ni ions were further deposited on B–CN as a cocatalyst to enhance the photocatalytic activity. Benefit from the synergy of 2D bubble-like structure and Ni species cocatalyst, recombination of photoinduced charges was greatly inhibited and the hydrogen evolution reaction (HER) was significantly accelerated. The resulted catalyst achieved a dramatically high H2 evolution rate of 1291 μmol g?1 h?1. This work provides an alternative way to synthesize novel porous carbon nitride together with non-noble metal cocatalysts toward enhanced photocatalytic activity for H2 production.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号