首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
In the present study, non-premixed combustion and NOx emission of H2, NH3, C3H8, and CH4 fuels have been studied in a combustion test unit under lean mixture conditions (λ = 4) at 8.6 kW thermal capacity. Furthermore, the combustion and NOx emission of the H2, C3H8, and CH4 fuels have been investigated for various NH3 enrichment ratios (5, 10, 20, and 50%) and excess air coefficients (λ = 1.1, 2, 3, and 4) at the same thermal capacity. The obtained results have been compared for each fuel. Numerical simulation results show that H2 emits intense energy through the reaction zone despite the lowest fuel consumption in mass, among others, due to its high calorific value. Therefore, it has a higher flame temperature than others. At the same time, C3H8 has the lowest flame temperature. Besides, NH3 has the shortest flame length among others, while C3H8 has the most extended flame form. The highest level of NOx is released from the NH3 flame in the combustion chamber, while the lowest NOx is released from the CH4. However, the lowest NOx emission at the combustion chamber exit is obtained in NH3 combustion, while the highest NOx emission is obtained with H2 combustion. It results from the shortest flame length of NH3, short residence time, and backward NOx reduction to N2 for NH3. As for H2, high flame temperature and relatively long flame, and high residence time of the products trigger NOx formation and keep the NOx level high. On the other hand, excess air coefficient from 1.1 to 2 increases NOx for H2, CH4, and NH3 due to their large flame diameters, unlike propane. Then, NOx emission levels decrease sharply as the excess air coefficient increases to 4 for each fuel. NH3 fuel also emits minimum NOx in other excess air coefficients at the exit, while H2 emits too much emission. With NH3 enrichment, the NOx emissions of H2, CH4, and C3H8 fuels at the combustion chamber exit decrease gradually almost every excess air coefficient apart from λ = 1.1. As a general conclusion, like renewable fuels, H2 appears to be a source of pollution in terms of NOx emissions in combustion applications. In contrast, NH3 appears to be a relatively modest fuel with a low NOx level. In addition, the high amount of NOx emission released from H2 and other fuels during the combustion can be remarkably reduced by NH3 enrichment with an excess air combustion.  相似文献   

2.
In this investigation the role of hydrogen addition in a reverse flow configuration, consisting of both non-premixed and premixed combustion modes, have been examined for the CDC flames. In the non-premixed configuration the air injection port is positioned at combustor exit end while the fuel injection port is positioned on the side so that the fuel is injected in cross-flow with respect to air injection. The thermal intensity of the flames investigated is 85 MW/m3 atm to simulate high thermal intensity gas turbine combustion conditions. The results are presented on the global flame signatures, exhaust emissions, and radical emissions using experiments and flowfield using numerical simulations. Ultra low NOx emissions are found for both the premixed and non-premixed combustion modes. Addition of hydrogen to methane fuel resulted in only a slight increase of NO emission, significant decrease of CO emission and extended the lean operational limit of the combustor.  相似文献   

3.
The effect of hydrogen addition in methane-air premixed flames has been examined from a swirl-stabilized combustor under confined conditions. The effect of hydrogen addition in methane-air flame has been examined over a range of conditions using a laboratory-scale premixed combustor operated at 5.81 kW. Different swirlers have been investigated to identify the role of swirl strength to the incoming mixture. The flame stability was examined for the effect of amount of hydrogen addition, combustion air flow rates and swirl strengths. This was carried out by comparing adiabatic flame temperatures at the lean flame limit. The combustion characteristics of hydrogen-enriched methane flames at constant heat load but different swirl strengths have been examined using particle image velocimetry (PIV), micro-thermocouples and OH chemiluminescence diagnostics that provided information on velocity, thermal field, and combustion generated OH species concentration in the flame, respectively. Gas analyzer was used to obtain NOx and CO concentration at the combustor exit. The results show that the lean stability limit is extended by hydrogen addition. The stability limit can reduce at higher swirl intensity to the fuel-air mixture operating at lower adiabatic flame temperatures. The addition of hydrogen increases the NOx emission; however, this effect can be reduced by increasing either the excess air or swirl intensity. The emissions of NOx and CO from the premixed flame were also compared with a diffusion flame type combustor. The NOx emissions of hydrogen-enriched methane premixed flame were found to be lower than the corresponding diffusion flame under same operating conditions for the fuel-lean case.  相似文献   

4.
Ammonia is one of the most promising alternative fuels. In particular, ammonia combustion for gas turbine combustors for power generation is expected. To shift the fuel for a gas turbine combustor to ammonia step-by-step, the partial replacement of natural gas by ammonia is considered. To reveal the turbulent combustion characteristics, CH4/NH3/air turbulent premixed flame at 0.5 MPa was experimentally investigated. The ammonia ratio based on the mole fraction and lower heating value was varied from 0 to 0.2. The results showed that the ratio of the turbulent burning velocity and unstretched laminar burning velocity decreased with an increase in the ammonia ratio. The reason for this variation is that the flame area decreased with an increase in the ammonia ratio as the flame surface density decreased and the fractal inner cutoff increased. The volume fractions in the turbulent flame region were almost the same with ammonia addition, indicating that combustion oscillation can be handled in a manner similar to that for the case of natural gas for CH4/NH3/air flames.  相似文献   

5.
Burning hydrogen in gas turbines is a relevant technological solution to decarbonize power production and propulsion systems. However, ensuring low NOx emission and preventing flashback can be challenging with hydrogen. Stabilization regimes and pollutant emissions from partially premixed CH4/H2/air flames above a coaxial Dual Fuel Dual Swirl injector are investigated in a laboratory-scale combustor at atmospheric conditions for increasing hydrogen contents. The injector consists of an external annular swirler providing premixed methane/air and a central channel fed with pure hydrogen. This burner virtually removes the risk of flashback due to the late injection of hydrogen. Flame stabilization regimes, CO and NOx emissions are analyzed for different configurations of the injector and operating points. The effect of swirling the hydrogen stream is investigated together with the influence of the hydrogen injector recess, i.e. its nozzle position with respect to the backplane of the combustion chamber. It is shown that swirling the central hydrogen stream favors aerodynamically stabilized flames resulting in a low thermal stress on the injector and limited NOx emissions. The study also highlights that a small recess of the central hydrogen injector widely extends the operability range of the burner with aerodynamically stabilized flames. With a sufficient inner swirl and a small recess, flames detach from the injector rim when the hydrogen bulk velocity is large enough. In this configuration, it is found that NOx emissions remain low even for operation with pure hydrogen. Moreover, NOx emissions decrease when increasing the thermal power for a fixed equivalence ratio.  相似文献   

6.
The combustion stability (extinction) limits and nitrogen oxide (NOx) emissions of nonpremixed ammonia (NH3)–hydrogen (H2)–air flames at normal temperature and pressure are studied to evaluate the potential of partial NH3 substitution for improving the safety of H2 use and to provide a database for the nonpremixed NH3-substituted H2–air flames. Considering coflow nonpremixed NH3–H2–air flames for a wide range of fuel and coflow air injection velocities (Vfuel and Vcoflow) and the extent of NH3 substitution, the effects of NH3 substitution on the stability limits and NOx emissions of the NH3–H2–air flames are experimentally determined, while the nonpremixed NH3–H2–air flame structure is computationally predicted using a detailed reaction mechanism. Results show significant reduction in the stability limits and unremarkable increase in the NOx emission index for enhanced NH3 substitution, supporting the potential of NH3 as an effective, carbon-free additive in nonpremixed H2–air flames. With increasing Vcoflow the NOx emission index decreases, while with increasing Vfuel it decreases and then increases due to the recirculation of burned gas and the reduced radiant heat losses, respectively. Given Vcoflow/Vfuel the flame length increases with enhanced NH3 substitution since more air is needed for reaction stoichiometry. The predicted flame structure shows that NH3 is consumed more upstream than H2 due to the difference between their diffusivities in air.  相似文献   

7.
The impact of pilot flame operation on the combustion of pure methane and hydrogen-enriched methane (H2/CH4: 50/50 in vol%) fuels was investigated in a gas turbine model combustor under atmospheric conditions. The burner assembly was designed to mimic the geometry of an industrial burner, the Siemens DLE Burner, in which a concentric annular ring equipped with pilot flame burners is implemented in the dome of the combustor. Two pilot burner configurations have been investigated: a non-premixed and a partially premixed pilot arrangement. The performance of the pilot burners was evaluated for varying Reynolds number (Re) and H2 enrichment. High-speed OH1 chemiluminescence imaging, as well as simultaneous planar laser-induced fluorescence measurements of the OH radicals and formaldehyde (CH2O) were used for evaluating the dynamics and structures of the flames for different conditions. Furthermore, emission measurements were carried out to determine the influence of hydrogen dilution on the NOx and CO emission levels. The main findings are (a) the effect of the pilot flame is sensitive to the Reynolds number of the main flame and the type of the pilot flame, (b) the stability range becomes narrower with increasing hydrogen ratio, due to the tendency to flashback, (c) non-premixed pilot flames lower the NOx and increase the CO emissions, albeit rather small differences in the emissions have been detected, and (d) the NOx and CO emissions become significantly lower with increasing hydrogen ratio.  相似文献   

8.
The potential of partial ammonia substitution to improve the safety of hydrogen use was evaluated computationally, using counterflow nonpremixed ammonia/hydrogen/air flames at normal temperature and pressure. The ammonia-substituted hydrogen/air flames were considered using a recent kinetic mechanism and a statistical narrow-band radiation model for a wide range of flame strain rates and the extent of ammonia substitution. The effects of ammonia substitution on the extinction limits and structure, including nitrogen oxide (NOx) and nitrous oxide (N2O) emissions, of nonpremixed hydrogen/air flames were investigated. Results show reduction of the high-stretch extinction (i.e., blow-off) limits, the maximum flame temperature and the concentration of light radicals (e.g., H and OH) with ammonia substitution in hydrogen/air flames, supporting the potential of ammonia as a carbon-free, clean additive for improving the safety of hydrogen use in nonpremixed hydrogen/air flames. For high-stretched flames, however, NOx and N2O emissions substantially increase with ammonia substitution even though ammonia substitution reduces flame temperature, implying that chemical effects (rather than thermal effects) of ammonia substitution on flame structure are dominant. Radiation effects on the extinction limits and flame structure are not remarkable particularly for high-stretched flames.  相似文献   

9.
The combustion stability limits and nitrogen oxide (NOx) emissions of burner-stabilized premixed flames of ammonia (NH3)-substituted hydrogen (H2)–air mixtures at normal temperature and pressure are studied to evaluate the potential of partial NH3 substitution to improve the safety of H2 use. The effects of NH3 substitution, nitrogen (N2) coflow and mixture injection velocity on the stability limits and NOx emissions of NH3–H2–air flames are experimentally determined. Results show a reduction of stability limits with NH3 substitution and coflow, supporting the potential of NH3 as a carbon-free, green additive in H2–air flames and indicating a different tendency from that for no coflow condition. The NOx emission index is almost constant even with enhanced NH3 substitution, though the absolute value of NOx emissions increases in general. At fuel-rich conditions, the NOx emission index decreases with increasing mixture injection velocity and the existence of coflow. The thermal deNOx process in the post-flame region is involved in reducing NOx emissions for the fuel-rich flames.  相似文献   

10.
Experiments were performed to add hydrogen to liquefied petroleum gas (LPG) and methane (CH4) to compare the emission and impingement heat transfer behaviors of the resultant LPG–H2–air and CH4–H2–air flames. Results show that as the mole fraction of hydrogen in the fuel mixture was increased from 0% to 50% at equivalence ratio of 1 and Reynolds number of 1500 for both flames, there is an increase in the laminar burning speed, flame temperature and NOx emission as well as a decrease in the CO emission. Also, as a result of the hydrogen addition and increased flame temperature, impingement heat transfer is enhanced. Comparison shows a more significant change in the laminar burning speed, temperature and CO/NOx emissions in the CH4 flames, indicating a stronger effect of hydrogen addition on a lighter hydrocarbon fuel. Comparison also shows that the CH4 flame at α = 0% has even better heat transfer than the LPG flame at α = 50%, because the longer CH4 flame configures a wider wall jet layer, which significantly increases the integrated heat transfer rate.  相似文献   

11.
Ammonia is a carbon-free fuel that has the potential to meet increasing energy demand and to reduce CO2 emissions. In the present work, the characteristics of pollutant emissions in ammonia premixed laminar flames are investigated using one-dimensional simulations, and heat release rate (HRR) surrogates for ammonia combustion are proposed. Both atmospheric and high-pressure conditions were considered, and four representative mechanisms for ammonia combustion were employed. It is shown that the total emission of NO and NH3 achieves a minimum around an equivalence ratio (?) of 1.1 under atmospheric conditions, and there is no noticeable emission of NO and NH3 for ? = 1.1 ~ 1.5 under high-pressure conditions. Three HRR surrogates, [NH3][OH], [NH2][O], and [NH2][H], were proposed based on the analysis of HRR and elementary reaction profiles. The performance of HRR surrogates was found to vary with equivalence ratios. For example, with the Miller mechanism, [NH3][OH], [NH2][O], and [NH2][H] have the best performance under atmospheric conditions at ? = 1.15, 0.95 and 1.05, respectively, and under high-pressure conditions at ? = 1.11, 0.87 and 0.96, respectively. Similar conclusions can also be drawn with other mechanisms. These findings provide valuable insights into emission control and flame identification of ammonia combustion.  相似文献   

12.
To understand the fundamental mechanisms of NO formation in natural gas-diesel dual fuel combustion, a numerical study on NO formation in laminar counterflow methane (CH4)/n-heptane (n-C7H16) dual fuel flames is conducted. The results reveal that the flame structure and NO formation vary with the fuel equivalence ratio. For a given n-C7H16/air mixture, the NO emission index decreases with increasing the equivalence ratio of the CH4/air mixture (φ(CH4/air)). The NO formation route analysis suggests that the prompt and thermal routes dominate the NO formation. The increase in φ(CH4/air) causes the decrease in the contribution of the prompt route to overall NO formation. NO formation by prompt route is mainly caused by rich n-C7H16 combustion. As φ(CH4/air) increases, the mole fractions of the radicals (OH, O and H) related to CH formation in the reaction zone of rich n-C7H16/air flame branch are decreased, which reduces the formation of NO by prompt route.  相似文献   

13.
This paper presents an experimental study of mild flameless combustion regime applied to methane/hydrogen mixtures in a laboratory-scale pilot furnace with or without air preheating. Results show that mild flameless combustion regime is achieved from pure methane to pure hydrogen whatever the CH4/H2 proportion. The main reaction zone remains lifted from the burner exit, in the mixing layer of fuel and air jets ensuring a large dilution correlated to low NOx emissions whereas CO2 concentrations obviously decrease with hydrogen proportion. A decrease of NOx emissions is measured for larger quantity of hydrogen due mainly to the decrease of prompt NO formation. Without air preheating, a slight increase of the excess air ratio is required to control CO emissions. For pure hydrogen fuel without air preheating, mild flameless combustion regime leads to operating conditions close to a "zero emission furnace", with ultra-low NOx emissions and without any carbonated species emissions.  相似文献   

14.
Due to its high hydrogen density and extensive experience base, ammonia (NH3) has been gaining special attention as a potential green energy carrier. This study focuses on premixed ammonia–hydrogen–air flames under standard temperature and pressure conditions using an inert silicon-carbide (SiC) porous block as a practical and effective medium for flame stabilization. Combustion experiments conducted using a lab scale burner resulted in stable combustion and high combustion efficiencies at very high ammonia concentration levels over a wide range of equivalence ratios. Noticeable power output densities have also been achieved. Preliminary results of NOx emission measurements indicate NOx concentrations as low as 35 ppm under rich conditions. The remarkable capability of this specific burner to operate efficiently and cleanly at high ammonia concentration levels, which can easily be achieved by partial cracking of NH3, is believed to be a key accomplishment in the development of ammonia fired power generation systems.  相似文献   

15.
Ammonia (NH3) is a carbon-free fuel that shows great research prospects due to its ideal production and storage systems. The experimental data of the laminar burning velocity of NH3/H2/air flame at different hydrogen ratios (XH2 = 0.1–0.5), equivalent ratios (φ = 0.8–1.3), initial pressures (P = 0.1–0.7 MPa), and initial temperatures (T = 298–493 K) were measured. The laminar burning velocity of the NH3/H2/air flame increased upon increasing the hydrogen ratios and temperature, but it decreased upon increasing the pressure. The equivalent ratio of the maximum laminar burning velocity was only affected by the proportion of reactants. The equivalence ratio value of the maximum laminar burning velocity was between 1.1 and 1.2 when XH2 = 0.3. The chemical reaction kinetics of NH3/H2/air flame under four different initial conditions was analyzed. The less NO maximum mole fraction was produced during rich combustion (φ > 1). The results provide a new reference for ammonia as an alternative fuel for internal combustion engines.  相似文献   

16.
《能源学会志》2020,93(6):2334-2343
To reveal the suppression mechanism of thermoacoustic instability flames under CO2/O2 jet in cross flow. Experiments on the effects of different preheated CO2/O2 jet in cross-flow (JICF) on combustion instability and NOx emissions in a lean-premixed combustor were conducted in a model gas turbine combustor. Two variables of the JICF were investigated—the flow rate and the temperature. Results indicate that combustion instability and NOx emissions could be suppressed when the JICF flow rate increases from 1 to 5 L/min. The average pressure amplitude decreases from 18.6 Pa to 1.6 Pa, and the average NOx emission decreases from 26.4 ppm to 12.1 ppm. But the average pressures amplitude and NOx emissions increase as the JICF temperature grows up. The sound pressure and the flame heat release rate exhibits different mode-shifting characteristics. The oscillation frequency of the sound pressure almost unchanged under JICF injection. However, the oscillation frequency of the heat release rate jumps from 95 Hz to 275 Hz under different JICF temperatures. As the CO2/O2 JICF flow rate arrived 3 L/min, the oscillation frequency of flame heat release rate jumps from 85 Hz to 265 Hz. The color of the flame fronts and roots were changed by the JICF injection. The average length of flame under CO2/O2 JICF cases is shorter than the N2/O2 JICF cases. There are three different modes of flames when the CO2/O2 JICF flow rate varies, and two different modes of flames when the CO2/O2 JICF temperature varies. This article explored the joint effects of different CO2/O2 or N2/O2 JICF on combustion instability and NOx emissions, which could be instructive to the designing of safely and clean combustors in industrial gas turbines.  相似文献   

17.
In this study, combustion and emission characteristics of methane mixed with steam (CH4/H2O) and the products of methane reforming with steam (CO/H2/H2O) were compared. Four fuel compositions were analysed: CH4+H2O, CH4+2H2O, and products of complete methane reforming in these mixtures, respectively. A comparison was carried out through the numerical model created via Ansys Fluent 2019 R2. A combustion process was simulated using a non-premixed combustion model, standard k-ϵ turbulence model and P-1 radiation model. The combustor heat capacity for interrelated fuel compositions was kept constant due to air preheating before combustion. The inlet air temperature was varied to gain a better insight into the combustion behaviour at elevated temperatures. The effect of steam addition on the emission characteristics and flame temperatures was also evaluated. NOx formation was assessed on the outlet of the combustion zone. The obtained results indicate that syngas has a higher combustion temperature than methane (in the same combustor heat capacity) and therefore emitted 27% more NOx comparing to methane combustion. With the air inlet temperature increment, the pollutant concentration difference between the two cases decreased. Steam addition to fuel inlet resulted in lesser emissions both for methane and syngas by 57% and 28%, respectively. In summary, syngas combustion occurred at higher temperature and produced more NOx emissions in all cases considered.  相似文献   

18.
This paper presents gas emissions from turbulent chemical flow inside a model combustor, for different blending ratios of hydrogen–methane composite fuels. Gas emissions such as CO and O2 from the combustion reaction were obtained using a gas analyzer. NOx emissions were measured with a NOx analyzer. The previously obtained flame temperature distributions were also presented. As the amount of hydrogen in the mixture increases, more hydrogen is involved in the combustion reaction, and more heat is released, and the higher temperature levels are resulted. The results have shown that the combustion efficiency increases and CO emission decreases when the hydrogen content is increased in blending fuel. It is also shown that the hydrogen–methane blending fuels are efficiently used without any important modification in the natural gas burner. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

19.
In order to evaluate the potential of burning and reforming ammonia as a carbon-free fuel in production of hydrogen, fundamental unstretched laminar burning velocities, and flame response to stretch (represented by the Markstein number) for laminar premixed hydrogen-added ammonia/air flames were studied both experimentally and computationally. Freely (outwardly)-propagating spherical laminar premixed flames at normal temperature and pressure were considered for a wide range of global fuel-equivalence ratios, flame stretch rates (represented by the Karlovitz number) and the extent of hydrogen substitution. Results show the substantial increase of laminar burning velocities with hydrogen substitution, particularly under fuel-rich conditions. Also, predicted flame structures show that the hydrogen substitution enhances nitrogen oxide (NOx) and nitrous oxide (N2O) formation. At fuel-rich conditions, however, the amount of NOx and N2O emissions and the extent of the increase with the hydrogen substitution are much lower than those under fuel-lean conditions. These observations support the potential of hydrogen as an additive for improving the burning performance with low NOx and N2O emissions in fuel-rich ammonia/air flames and hence the potential of using ammonia as a clean fuel. Increasing the amount of added hydrogen tends to enhance flame sensitivity to stretch.  相似文献   

20.
The potential utilization of ammonia as a carbon-free fuel under oxygen (O2)-enriched condition is demonstrated, suggesting its practically appropriate burning conditions by measuring and predicting the combustion characteristics of outwardly-propagating spherical O2-enriched NH3/air premixed flames at normal temperature and pressure. Measured and computed laminar burning velocities and predicted flame structure exhibit that the O2-enriched ammonia/air flames become thinner and propagate faster with O2 enrichment. Observed flame morphologies and measured and computed Markstein numbers reveal that all the present O2-enriched flames are stable in terms of the flamefront cellular instability due to preferential diffusion and the effects of O2 enrichment on the instability are negligible. Volume-based 35–40% O2 in the nonfuel mixtures demonstrates the proper burning intensity for practical applications, comparable to the typical hydrocarbon/air flames. In the present flame configuration, however, local nitrogen oxides emissions are found to be high, which should be substantially reduced in the practical systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号