首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
Renewable energy production using microorganisms is one of the challenging issues for environmental sustainability. Algal hydrogen (H2) production has often been achieved by sulfur (S) and chloride ion (Cl?) deprivation in a growth medium; however, it may not be realistic to control S or Cl? concentrations in natural sources (e.g., wastewater). In this study, two different green algal species, Chlamydomonas reinhardtii and Chlorella sorokiniana were selected and their photosynthetic activities were compared with different acetate/Cl? ratios both in batch and continuous modes. At 150 of acetate/Cl? ratio, the H2 production rates were 0.25–0.33 μmol L?1 min?1 for C. sorokiniana and 0.20–0.38 μmol L?1 min?1 for C. reinhardtii, respectively. The hydrogenase (HydA) reactivation and photosystem II (PSII) inhibitor test revealed that biohydrogen production by algae is due to photosynthetic activity. It was found that maintaining acetate/Cl? ratios greater than 60–100 leads to continuous O2 depletion and thus renewable H2 production for both algal species. Molecular dynamics (MD) simulations of hydrogen bonding between Yz and His190 in PSII supported O2 inhibition using acetate. Using fermenter effluents, C. sorokiniana and C. reinhardtii showed a successful continuous H2 production of ~80 μmol L?1 and ~95 μmol L?1, respectively, for 15 days.  相似文献   

2.
In this study we have demonstrated the possibility of phototrophic hydrogen production in C. reinhardtii under N-deprived conditions. When tested under air + CO2, and Ar + CO2 N-deprived C. reinhardtii demonstrated decrease in PSII activity mainly due to over reduction of PQ, in addition no ascorbate accumulation was observed in cells. Under air + CO2 atmosphere cells accumulated excessive amounts of starch. When incubated under Ar + CO2 atmosphere cells accumulated starch as nitrogen replete cultures and no hydrogen production was observed. Hydrogen production (86 ml H2 per one l of culture) occurred under Ar + CO2 atmosphere when particular two-step illumination protocol was implicated. In oxygen producing and early oxygen consuming stage cells were illuminated under light intensity 169 μE m?2 s?1. When light was switched to 30 μE m?2 s?1, cultures quickly respired all oxygen and transient to anaerobic conditions with subsequent hydrogen production 2 h later. Actual quantum yield of C. reinhardtii cultures was measured in photobioreactor and maximal quantum efficiency of PSII of dark adapted cells together with JIP test were studied.  相似文献   

3.
Chlamydomonas reinhardtii cc124 and Azotobacter chroococcum bacteria were co-cultured with a series of volume ratios and under a variety of light densities to determine the optimal culture conditions and to investigate the mechanism by which co-cultivation improves H2 yield. The results demonstrated that the optimal culture conditions for the highest H2 production of the combined system were a 1:40 vol ratio of bacterial cultures to algal cultures under 200 μE m?2 s?1. Under these conditions, the maximal H2 yield was 255 μmol mg?1 Chl, which was approximately 15.9-fold of the control. The reasons for the improvement in H2 yield included decreased O2 content, enhanced algal growth, and increased H2ase activity and starch content of the combined system.  相似文献   

4.
A newly enriched marine phototrophic bacterial consort was studied for its capability of hydrogen production in batch cultivations using butyrate as the sole carbon source. Analyses of denaturing gradient gel electrophoresis (DGGE) profiles showed that the mixed bacterial consort consisted mainly of Ectothiorhodospira, Sporolactobacillus, and Rhodovulum. Important parameters investigated include temperature, light intensity, initial pH, and butyrate concentration. The pH of the culture medium significantly increased as fermentation proceeded. Optimal cell growth was observed at temperature of 25–35 °C, light intensity of 80–120 μmol photons/m2 s, initial pH of 8, butyrate concentration of 20–40 mmol/l. Optimal conditions for hydrogen production were 30 °C, light intensity of 80 μmol photons/m2 s, initial pH 8. The increase of butyrate concentration (10–50 mmol/l) resulted in higher hydrogen production, but the yield of hydrogen production (mol H2/mol butyrate) gradually decreased with increasing butyrate concentration. The maximal hydrogen yield and hydrogen production rate were estimated to be 2.52 ± 0.12 mol H2/mol butyrate and 19.40 ± 2.32 ml/l h, respectively. These results indicate that optimization of the culture conditions resulted in a simultaneous increase in biohydrogen production and cell growth.  相似文献   

5.
Light-dependent hydrogen production by platinized Photosystem I isolated from the cyanobacterium Thermosynechococcus elongatus BP-1 was optimized using response surface methodology (RSM). The process parameters studied included temperature, light intensity and wavelength, and platinum salt concentration. Application of RSM generated a model that agrees well with the data for H2 yield (R2 = 0.99 and p < 0.001). Significant effects on the total H2 yield were seen when the platinum salt concentration and temperature were varied during platinization. However, light intensity during platinization had a minimal effect on the total H2 yield within the region studied. The values of the parameters used during the platinization that optimized the production of H2 were light intensity of 240 μE m−2 s−1, platinum salt concentration of 636 μM and temperature of 31 °C. A subsequent validation experiment at the predicted conditions for optimal process yield gave the maximum H2 yield measured in the study, which was 8.02 μmol H2 per mg chlorophyll.  相似文献   

6.
Photoproduction of H2 gas was examined in the Chlamydomonas reinhardtii tla1 strain, CC-4169, containing a truncated light-harvesting antenna, along with its parental CC-425 strain. Although enhanced photosynthetic performance of truncated antenna algae has been demonstrated previously (Polle et al. Planta 2003; 217:49-59), improved H2 photoproduction has yet to be reported. Preliminary experiments showed that sulfur-deprived, suspension cultures of the tla1 mutant could not establish anaerobiosis in a photobioreactor, and thus, could not photoproduce H2 gas under conditions typical for the sulfur-deprived wild-type cells (Kosourov et al. Biotech Bioeng 2002; 78:731-40). However, they did produce H2 gas when deprived of sulfur and phosphorus after immobilization within thin (∼300 μm) alginate films. These films were monitored for long-term H2 photoproduction activity under light intensities ranging from 19 to 350 μE m−2 s−1 PAR. Both the tla1 mutant and the CC-425 parental strain produced H2 gas for over 250 h under all light conditions tested. Relative to the parental strain, the CC-4169 mutant had lower maximum specific rates of H2 production at low and medium light intensities (19 and 184 μE m−2 s−1), but it exhibited a 4-times higher maximum specific rate at 285 μE m−2 s−1 and an 8.5-times higher rate at 350 μE m−2 s−1 when immobilized at approximately the same cell density as the parental strain. As a result, the CC-4169 strain accumulated almost 4-times more H2 than CC-425 at 285 μE m−2 s−1 and over 6-times more at 350 μE m−2 s−1 during 250-h experiments. These results are the first demonstration that truncating light-harvesting antennae in algal cells can increase the efficiency of H2 photoproduction in mass culture at high light intensity.  相似文献   

7.
Biohydrogen is usually produced via dark fermentation, which generates CO2 emissions and produces soluble metabolites (e.g., volatile fatty acids) with high chemical oxygen demand (COD) as the by-products, which require further treatments. In this study, mixotrophic culture of an isolated microalga (Chlorella vulgaris ESP6) was utilized to simultaneously consume CO2 and COD by-products from dark fermentation, converting them to valuable microalgae biomass. Light intensity and food to microorganism (F/M) ratio were adjusted to 150 μmol m−2 s−1 and F/M ratio, 4.5, respectively, to improve the efficiency of assimilating the soluble metabolites. The mixotrophic microalgae culture could reduce the CO2 content of dark fermentation effluent from 34% to 5% with nearly 100% consumption of soluble metabolites (mainly butyrate and acetate) in 9 days. The obtained microalgal biomass was hydrolyzed with 1.5% HCl and subsequently used as the substrate for bioH2 production with Clostridium butyricum CGS5, giving a cumulative H2 production of 1276 ml/L, a H2 production rate of 240 ml/L/h, and a H2 yield of 0.94 mol/mol sugar.  相似文献   

8.
Microalgae have garnered interest for the production of valuable molecules ranging from therapeutic proteins to biofuels. However, microalgae also are associated with the considerable problem of phytoplankton bloom. In this study, we demonstrated algal growth using Isochrysis galbana as a model can be controlled photobiologically. Long dark period (24-h light: 24-h dark) unlike common photoperiod resulted in biomass loss and slower growth rates, but were unlikely to cause fatal damage. Algal cell growth can be significantly recovered with the onset of light. Also, it was confirmed that blue light-emitting diode (LED) illumination was able to effectively support cell growth of I. galbana as the sole light source. The blue LED intensity with 200% (580 l×, 18.52 μmol m−2 s−1) based on 8000 l× (98.4 μmol m−2 s−1) fluorescent lamp provided the best support for growth of I. galbana. We verified excessive light intensities lead to inhibition of algal growth, whereas low light intensities also did not promote algal growth. Further, I. galbana cell growth can be controlled using blue LED with extremely high LED intensities. These results may provide means to control algal population for either goal of growth or inhibition through proper use of such illumination.  相似文献   

9.
The present work is devoted to the synthesis of the ferrite Ca2Fe2O5 as photocatalyst crystallizing in the brownmillerite structure. The ternary oxide is prepared by sol-gel auto combustion and characterized by physical and electrochemical methods. The thermal analysis (TG/DSC) shows that, the formation of the brownmillerite is observed above 660 °C. The X-ray diffraction and BET analysis show respectively a single phase with an active surface area of ~6 m2 g?1. The SEM micrographs exhibit an inhomogeneous structure formed by agglomeration of irregular shaped grains, confirmed by the laser granulometry analysis. The forbidden band (~2.3 eV) determined from the diffuse reflectance, permits to explore ~ 30% of the sun spectrum into chemical energy. The p-type comportment of Ca2Fe2O5 is demonstrated by the capacitance-potential (C?2 - E) graph with a flat band potential (Efb = 0.93 VSCE), due to oxygen over-stoichiometry. The negative potential of the conduction band (?1.06 VSCE) predicts the feasibility of the H2 generation. Indeed, Ca2Fe2O5 is chemical stable in a wide pH domain and is positively experimented as photocatalyst for the H2-production under visible light. The best performance is obtained in alkaline medium (NaOH, 0.1 M) with a mean evolution rate of 18 μmol g?1 min?1. However, Ca2Fe2O5 coupled to ZnO sol-gel (ZnO-SG) improves the catalytic performance. The H2 evolution rate over (Ca2Fe2O5/ZnO-SG) reached 24 μmol g?1 min?1 after 60 min. It has also been shown that ZnO–P, prepared by precipitation, is more efficient than that synthetized by sol-gel method (ZnO-SG) and TiO2–P25.  相似文献   

10.
The low photocatalytic activity of red phosphorus (RP) for H2 production seriously restricts its wide application. In this work, we reported a facile synthesis and remarkable activity improvement of NiO/RP composite for water splitting. As a result, the 3% NiO/RP composite exhibited the highest photocatalytic activity for H2 production (57.27 μmol g?1 h?1), which is 68.56 times higher than that of pure RP (0.82 μmol g?1 h?1) under visible light (λ ≥ 420 nm) irradiation. The investigation of photocarriers separation mechanism indicated NiO/RP composite applied a Z-scheme mechanism to promote the photocarriers separation. This is a potential strategy to dramatically enhance the photocatalytic activity of RP for H2 evolution using transition metal oxide to efficiently separate the photocarriers under light irradiation.  相似文献   

11.
12.
Developing earth abundant, active and stable photocatalysts for water splitting is a critical but challenging procedure for efficient conversion and storage of sustainable energy. Here, a ternary photocatalyst was rationally prepared for efficient H2 production by covalently anchoring a nickel molecule cocatalyst (NiL) onto graphitic carbon nitride nanosheets (CN) and introducing nickel oxides (NiOx) as hole-transport materials. The lower H2 overpotential by NiL and the faster separation of photoinduced carriers by NiOx nanoparticles account for the efficient H2 generation of CN without the help of noble metals. Eventually, the prepared NiL/NiOx/CN catalyst exhibited excellent performance for H2 evolution (289 μmol g?1 h?1) in TEOA solution under visible light irradiation, which is superior to 3NiL/CN (161 μmol g?1 h?1) and CN (Null). Furthermore, a possible mechanism of photocatalytic H2 production for NiL/NiOx/CN is proposed based on a series of electrochemical measurements. The noble-metal-free photocatalyst developed in this work will pave a new way to synthesize low-cost multicomponent photocatalysts for solar conversion.  相似文献   

13.
In the context of hydrogen production by microalgae, the growth of Chlamydomonas reinhardtii was characterized under autotrophic and mixotrophic conditions in a fully controlled photobioreactor (PBR). The combined effect of light transfer conditions, as represented by the illuminated fraction γ, with acetate consumption was observed upon establishment of anoxia. Anoxia was reached in batch cultures when γ was close to 1 (almost fully illuminated culture) in mixotrophic conditions while a value of γ ≈ 0.46 in autotrophic conditions was not sufficient. Based on these results, continuous hydrogen production was established in a cylindrical PBR operated in luminostat with constant illumination and in mixotrophic conditions. Maximum hydrogen gas production was equal to 1.4 ± 0.1 mlH2 l−1 h−1 for photon flux density of 110 μmol m−2 s−1 and reactor illuminated fraction of γ = 0.5. Carbon mass balance was realized, emphasizing the necessity to work in strictly autotrophic conditions for hydrogen production with no concomitant CO2 release.  相似文献   

14.
A series of SnS2/ZnIn2S4 (x-SS/ZIS) photocatalysts with different mass ratios of SnS2 were prepared by a hydrothermal method. The resulted composites were used for photocatalytic hydrogen evolution under visible light excitation. All the SS/ZIS composites exhibited significantly enhanced photocatalytic activity for H2 evolution. Obviously, the highest H2 evolution rate of 769 μmol g?1 h?1 was observed over 2.5-SS/ZIS, which was approximately 10.5 times that of the ZnIn2S4 (73 μmol g?1 h?1). The enhanced photocatalytic performance was attributed to the successful construction of SnS2/ZnIn2S4 heterojunctions, leading to rapid charge separation and fast transfer of the photo-generated electrons and holes under light irradiation. On the basis of PL, electrochemical impedance spectroscopy (EIS), photocurrent measurements and the H2 evolution tests, a plausible photocatalytic mechanism was proposed.  相似文献   

15.
16.
Small surface area, deficient reaction sites, and poor visible-light harvest ability of the original graphitic carbon nitride (g-C3N4) severely restrict its photocatalytic H2 production activity. Here, an ultrathin porous and N vacancies rich g-C3N4 (VN-UP-CN) was fabricated by thermal oxidation exfoliation and high-temperature calcination under the Ar atmosphere. The ultrathin porous morphology increases the surface area and reaction sites of original g-C3N4, moreover, the produced N vacancies greatly broaden the light harvest ability of ultrathin porous g-C3N4 (UP–CN). Therefore, VN-UP-CN displays the maximal H2 production rate of 2856.7 μmol g?1 h?1 in triethanolamine solution under visible-light, and adding 0.5 M of K2HPO4 can further improve its H2 production rate to 4043.9 μmol g?1 h?1. Importantly, VN-UP-CN also shows good performance in simultaneous photocatalytic H2 production and benzyl alcohol oxidation to benzaldehyde with the activities of 196.08 and 198.28 μmol g?1 h?1, respectively, which avoids the waste of sacrificial agent and photogenerated holes. This work affords an achievable way to design the efficient g-C3N4 photocatalyst by morphology and defect regulation, which can effectively utilize both photogenerated electrons and holes for H2 and value-added chemical production.  相似文献   

17.
Schottky junction and p-n heterojunction are widely employed to enhance the charge transfer during the photocatalysis process. Herein, Cu and Cu3P co-modified TiO2 nanosheet hybrid (Cu–Cu3P/TiO2) was fabricated using an in situ hydrothermal method. The ternary composite achieved the superior H2 evolution rate of 6915.7 μmol g?1 h?1 under simulated sunlight, which was higher than that of Cu/TiO2 (4643.4 μmol g?1 h?1) and Cu3P/TiO2 (6315.8 μmol g?1 h?1) and pure TiO2 (415.7 μmol g?1 h?1). The enhanced activity can be attributed to the collaboration effect of Schottky junction and p-n heterojunction among Cu/TiO2 and Cu3P/TiO2, which can harvest the visible light, reduce the recombination of charge carriers and lower the overpotential of H2 evolution, leading to a fast H2 evolution kinetics. This work develops a feasible method for the exploration of H2 evolution photocatalyst with outstanding charge separation properties.  相似文献   

18.
Recently, there has been a propensity to postpone dealing with the world's climate concerns until later, resulting in a 1.5 °C rise in temperature over the last century. Therefore, interest in biologically derived, inexhaustible energy sources based on solar energy is growing. Cyanobacteria have the potential to produce clean, renewable fuels in the form of hydrogen (H2) gas, derived from solar energy and water. The current study reports the screening 11 cyanobacterial strains isolated from rice paddies and hotsprings for efficient H2 producers. According to our findings, H2 concentrations in the species ranged from 3.6 to 48.9 μmol mg−1 Chl a h−1. H2 production by isolated species was shown to have a 2% positive influence on oxygen (O2) and carbon dioxide (CO2) concentrations and a 2% negative effect on all nitrogen gas (N2) concentrations. It was discovered that at high CO2 concentrations, photosynthesis is enhanced but H2 production is suppressed. Anabaena variabilis BTA-1047 was found to be the most active H2-producing species, with an H2 production activity of 21.3 μmol mg−1 Chl a h−1. Moreover, a 1% O2: 2% CO2 gas mixture doubled the strain activity of H2 production. The findings of the study called into the question the notion that only an anaerobic environment is required for H2 production by N2-fixing cyanobacterial species and explored whether H2 productivity can be increased by stimulating the micro-anaerobic environment with a carbon source.  相似文献   

19.
Photocatalysts with abundant active sites are essential for photocatalytic H2 evolution from water. Herein, Ni0.85Se-deposited g-C3N4 was obtained by a physical solvent evaporation method. The investigation shows that Ni0.85Se with unsaturated active Se atoms can significantly improve the photocatalytic activity of g-C3N4, and the H2 production rate of Ni0.85Se/g-C3N4 can reach 8780.3 μmol g?1 h?1, which is 3.5 and 92.9 times higher than that of Ni0.85+xSe/g-C3N4 (2497.9 μmol g?1 h?1) and pure g-C3N4 (94.5 μmol g?1 h?1), respectively. This improvement can be attributed to the quick charge transfer between Ni0.85Se and g-C3N4 with S-scheme heterojunction feature based on a series of trapping experiments and photoelectrochemical analysis. Moreover, abundant unsaturated Se atoms could provide more H2 evolution active sites. This work sheds light on the construction of heterojunctions with abundant active sites for H2 production.  相似文献   

20.
Photobiological H2 production in microalgae is a promising approach for the development of alternative clean and renewable energy. As a unicellular green alga, Chlamydomonas reinhardtii is regarded as an ideal candidate for sustainable photo-H2 production. However, growth and photo-H2 producing are still expensive and energy extensive. Wastewater has been suggested as an economical resource for microalgae growth and biofuels production. In this study, we characterized the cell growth and photo-H2 production of C. reinhardtii CC503 cultured in waste water from pressing process of fermented sweet sorghum stalks during Advanced Solid State Fermentation (ASSF). The maximal cells concentration reached 8.9 × 106 cells/mL in ASSF wastewater medium (AWM) with the fastest growth rate of 0.19 × 106 cells/h, compared to 18.2 × 106 cells/mL and 0.36 × 106 cells/h in TAP medium and to 1.3 × 106 cells/mL and 0.02 × 106 cells/h in BGII medium respectively. The optimized concentration of wastewater for algae cells growth was determined to be 13.3% (7.5 folds dilution), under which, surprisingly the photosynthetic H2 evolution was increased by more than 700% compared to the cells grown in TAP medium. This system appears to be a good strategy for the development of an economical microalgal photobiological H2 production scheme. Finally, the possible mechanism for such an H2 enhancement was identified as the reduction of PSII activity in AWM grown cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号