首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 392 毫秒
1.
The objective of this study is to demonstrate the significant improvement in the photoelectrochemical (PEC) hydrogen generation by a photoanode owing to the increased surface area of the substrate. In this work, multilayered tungsten oxide (WO3) films have been successfully synthesized onto the large‐area sheet (9 × 9cm2) and mesh (1 × 20cm2) ‐type stainless steel (SS) substrates using screen printing and brush painting methods, respectively. All the WO3 films are porous and nanocrystalline (30–80 nm) in nature with a monoclinic crystal structure as revealed from X‐ray diffraction and scanning electron microscopy studies. The PEC water splitting study is performed under simulated 1 SUN illumination (AM1.5 G) in a typical two‐electrode cell configuration with WO3 photoanode and Pt wire immersed in 0.5 M H2SO4 electrolyte. The photocurrent as well as hydrogen generation rate for WO3 photoanodes coated on the plane SS sheet substrate is relatively low and showed minimal change with increasing film thickness. On the other hand, the photocurrent as well as the hydrogen generation is enhanced by a 3–4 fold degree for the WO3 photoanodes coated on SS mesh. We attribute such efficient water splitting to the increment in the filling factor of the WO3 material due to the large effective surface area of the SS mesh as compared to the SS sheet substrate. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

2.
The hydrogen generation from photoelectrochemical (PEC) water splitting under visible light was investigated using large area tungsten oxide (WO3) photoanodes. The photoanodes for PEC hydrogen generation were prepared by screen printing WO3 films having typical active areas of 0.36, 4.8 and 130 cm2 onto the conducting fluorine-doped tin oxide (FTO) substrates with and without embedded inter-connected Ag grid lines. TiO2 based dye-sensitized solar cell was also fabricated to provide the required external bias to the photoanodes for water splitting. The structural and morphological properties of the WO3 films were studied before scaling up the area of photoanodes. The screen printed WO3 film sintered at 500 °C for 30 min crystallized in a monoclinic crystal structure, which is the most useful phase for water splitting. Such WO3 film revealed nanocrystalline and porous morphology with grain size of ∼70-90 nm. WO3 photoanode coated on Ag grid embedded FTO substrate exhibited almost two-fold degree of photocurrent density enhancement than that on bare FTO substrate under 1 SUN illumination in 0.5 M H2SO4 electrolyte. With such enhancement, the calculated solar-to-hydrogen conversion efficiencies under 1 SUN were 3.24% and ∼2% at 1.23 V for small (0.36 cm2) and large (4.8 cm2) area WO3 photoanodes, respectively. The rate of hydrogen generation for large area photoanode (130.56 cm2) was 3 mL/min.  相似文献   

3.
Developing novel photoanodes with high efficiency for photoelectrochemical (PEC) water splitting has become the key to solar energy conversion and storage realm. Herein, 3D worm-like bismuth vanadate (BiVO4) is grafted on 2D thin tungsten trioxide (WO3) underlayer by electrodeposition to form mixed–dimensional structured photoanode, resulting in significant improvement of the photocatalytic performance and the charge separation efficiency. Characterization results prove that the mixed–dimensional structured can boost the photocatalytic activity by suppressing back reaction and charge recombination of the bulk BiVO4. Simultaneously, the electrical conductivity of photoanode can be increased by W6+ doping. Furthermore, a robust catalyst NiCo2Ox is coated onto the surface of WO3/BiVO4 photoanode, exhibiting a desirable photocurrent of 3.85 mA cm?2 at 1.23 V vs. RHE and an excellent stability over 3 h. Both the excellent photocurrent density and great operational stability of this 2D/3D WO3/BiVO4 photoanode make it a promising material for practical applications.  相似文献   

4.
Photo-electrochemical (PEC) water splitting is a promising and environmentally benign approach for generation of hydrogen using solar energy with minimum greenhouse gas emissions. The development of semiconductor materials for photoanode with superior optoelectronic properties combined with excellent photoelectrochemical activity and stability is vital for the realization of viable commercial development of PEC water splitting systems. Herein, we report for the very first time, the study of nanoscale bilayer architecture of WO3 and Nb and N co-doped SnO2 nanotubes (NTs), wherein WO3 NTs are coated with (Sn0.95Nb0.05)O2:N-600 (annealed in NH3 at 600 °C) layer of different thicknesses, as a potential semiconductor photoanode material for PEC water splitting. An excellent long term photoelectrochemical stability under illumination in the acidic electrolyte solution combined with a solar-to-hydrogen efficiency (STH) of ~3.83% (under zero applied potential) is obtained for the bilayer NTs, which is the highest STH obtained thus far, to the best of our knowledge compared to the other well studied semiconductor materials, such as TiO2, ZnO and Fe2O3. These promising results demonstrate the excellent potential of bilayer NTs as a viable and promising photoanode in PEC water splitting.  相似文献   

5.
Tungsten trioxide (WO3) films were prepared by a solution-based method using ammonium metatungstate as the precursor and polyethylene glycol as the structure-directing agent. With the measurements of thermogravimetric and differential thermal analysis, X-ray diffraction, scanning electron microscopy, and ultraviolet and visible absorption spectroscopy, the effect of substrates and temperature on the crystal structure and crystalline formation of WO3 was investigated. The results show that the WO3 films were crystallized by sintering at over 400 °C, and the films prepared on fluorine–tin oxide glass substrates were distorted cubic in crystalline phase. However, a monoclinic crystal was formed by coating films on graphite and quartz glass substrates. Photoelectrochemical activity was evaluated under visible light irradiation. The WO3 electrode calcined at 450 °C exhibited a photocurrent density of up to 2.7 mA/cm2 at 1.4 V (vs. RHE) under incident 100 mW/cm2 500 W Xe lamp and donor carrier density ND = 2.44 × 1022 cm−3 in 0.5 M H2SO4 electrolyte. The photoanode was stable up to 90 min, and the photocurrent decreased 39% with continuous gas evolution.  相似文献   

6.
To fabricate an efficient two-component Z-scheme system for visible light induced overall water splitting, CdS/WO3 nanocomposites, with cubic CdS nanoparticles grown on the surface of hexagonal WO3 nanorods, were prepared via a facile precipitation of Cd2+ with S2− in the presence of pre-obtained hexagonal WO3 nanorods. MnO2 and MoS2, the co-catalysts for O2 and H2 generation respectively, were selectively deposited on WO3 and CdS in the CdS/WO3 nanocomposites. The resultant MoS2–CdS/WO3–MnO2 composites show photocatalytic activity for overall water splitting under visible light, with an optimized performance observed over 2.0%MoS2-0.2 CdS/WO3-1.0%MnO2. The visible light induced overall water splitting over MoS2–CdS/WO3–MnO2 nanocomposites can be attributed to the presence of a Z-scheme charge transfer pathway in the CdS/WO3 nanocomposites, ie, the transfer of the photo-generated electrons from the CB of WO3 to the VB of CdS to recombine with the photo-generated holes through an efficient interface between cubic CdS and hexagonal WO3. The left photo-generated holes in VB of WO3 and the photo-generated electrons in CB of CdS therefore can accomplish the water oxidation and water reduction simultaneously, with the assistance of the surface deposited cocatalysts (MnO2 and MoS2). This work demonstrated the great potential of fabricating the two-component direct Z-scheme photocatalytic systems for overall water splitting from two semiconductors with a staggered band structure.  相似文献   

7.
Herein, we report the use of tungsten(VI) oxide (WO3) as support for Rh0 nanoparticles. The resulting Rh0/WO3 nanoparticles are highly active and stable catalysts in H2 generation from the hydrolysis of ammonia borane (AB). We present the results of our investigation on the particle size distribution, catalytic activity and stability of Rh0/WO3 catalysts with 0.5%, 1.0%, 2.0% wt. Rh loadings in the hydrolysis reaction. The results reveal that Rh0/WO3 (0.5% wt. Rh) is very promising catalyst providing a turnover frequency of 749 min?1 in releasing 3.0 equivalent H2 per mole of AB from the hydrolysis at 25.0 °C. The high catalytic activity of Rh0/WO3 catalyst is attributed to the reducible nature of support. The report covers the results of kinetics study as well as comparative investigation of activity, recyclability, and reusability of colloidal(0) nanoparticles and Rh0/WO3 (0.5 % wt. Rh) catalyst in the hydrolysis reaction.  相似文献   

8.
The catalytic reactivity and photoactivity of WO3 and BiVO4 oxide semiconductors have general obstacles as electrodes in emergent photo-electrochemical (PEC) hydrogen evolution applications. The present work comprises the integration of photocatalyst with wide visible photon absorption material which is vital for hydrogen evolution in photo-electrocatalytic water splitting. Herein, the 1D WO3 NWs have been integrated with stable water oxidation photocatalysts of BiVO4 and Bi2S3 as a photoanode (Bi2S3/BiVO4/WO3) for photoelectrochemical hydrogen evolution reactions. The morphological variations in the Bi2S3/BiVO4/WO3 heterostructure manifest catalytic activity and rapid charge transfer characteristics owing to band alignment and a wide range of visible photon absorption. The optimized Bi2S3/BiVO4/WO3 multidimensional photoanode accomplishes a superior photocurrent density of 1.52 mA/cm2, a seven-fold higher than pristine WO3 photoanode counterpart (0.2 mA/cm2) at 1 V vs. RHE. A prodigious lowest onset potential of ?0.01 V vs. RHE) has been achieved which enables very high solar to hydrogen conversion. The photoelectrode with entangled morphology such as nanosheets, nanocrystals and nanorods expanded their surface to volume ratio having enhanced catalytic performance. The hybrid photoanodes have demonstrated the lowest charge transfer resistance of 360 Ohm/cm2 with a 7-fold rise in hydrogen evolution performance. The resultant triadic Bi2S3/BiVO4/WO3 heterostructure appeared to be an emerging stable photo-electro catalyst for hydrogen evolution applications.  相似文献   

9.
In order to enhance the photoelectrochemical (PEC) performance of tungsten oxide (WO3), it is critical to overcome the problems of narrow visible light absorption range and low carrier separation efficiency. In this work, we firstly prepared the 2D plate-like WO3/CuWO4 uniform core-shell heterojunction through in-situ synthesis method. After modification with the amorphous Co-Pi co-catalyst, the ternary uniform core-shell structure photoanode achieved a photocurrent of 1.4 mA/cm2 at 1.23 V vs. RHE, which was about 6.67 and 1.75 times higher than that of pristine WO3 and 2D uniform core-shell heterojunction, respectively. Furthermore, the onset potential of 2D WO3/CuWO4/Co-Pi core-shell heterojunction occurred a negatively shifts of about 20 mV. Experiments illuminated that the enhanced PEC performance of WO3/CuWO4/Co-Pi photoanode was attributed to the broader light absorption, reduced carrier transfer barrier and increased carrier separation efficiency. The work provides a strategy of maximizing the advantages of core-shell heterojunction and co-catalyst to achieve effective PEC performance.  相似文献   

10.
Hydrogen evolution through photoelectrochemical (PEC) water splitting by tungsten oxide-based photoanodes, as a stable and environmental-friendly material with moderate band gap, has attracted significant interest in recent years. The performance of WO3 photoanode could be hindered by its poor oxygen evolution reaction kinetics and high charge carrier recombination rate. Additionally, scalable and cost-effective commercial procedure to prepare nanostructured electrodes is still challenging. We present, for the first time, a novel and scalable method to fabricate highly efficient self-supported WO3/W nanostructured photoanodes from commercial W–Cu powder metallurgy (P/M) parts for water splitting. The electrodes were prepared by electrochemical etching of Cu networks followed by hydrothermal growth of WO3 nanoflakes. Interconnected channels of W skeleton provided high active surface area for the growth of WO3 nanoflakes with a thickness of ~40 nm and lateral dimension of ~250 nm. The optimized photoelectrode having 35% interconnected porosity exhibited an impressive current density of 4.36 mA cm−2 comprising a remarkable photocurrent of 1.71 mA cm−2 at 1.23 V vs. RHE under 100 mW cm−2 simulated sunlight. This achievement is amongst the highest reported photocurrents for WO3 photoelectrodes with tungsten substrate reported so far. Impedance and Mott-Schottky analyses evidenced fast charge transfer, low recombination rate, and accelerated O2 detachment provided by optimum 3D porous WO3/W electrode. Due to the nature of the commercial P/M parts and low-temperature hydrothermal processing, the procedure is cost-effective and scalable which can pave a new route for the fabrication of highly porous and efficient water splitting electrodes.  相似文献   

11.
Bismuth vanadate (BiVO4) is being widely identified as a leading n-type semiconductor material for photoelectrochemical (PEC) water splitting. Nevertheless, achieving efficient PEC water oxidation process through BiVO4 photoanode still faces serious challenge such as severe electron-hole recombination. In this case, PEC activity of BiVO4 photoanode was enhanced by decoration of three-dimensional CoMn-layered double hydroxide (CoMn-LDH) nanoflakes on the BiVO4 surface via a facile electrodeposition process. It was suggested that CoMn-LDH played a synergistic effect on broadening internal light absorption, which accelerated injection of holes carrier to electrolyte and alleviated the electron-hole recombination, resulting in expediting faster PEC water oxidation reaction kinetics. Consequently, the photocurrent density of BiVO4/CoMn-LDH photoanode achieved 2.69 mA cm−2 at 1.23 VRHE, 2.45 times higher than the pristine BiVO4. What's more, 220 mV negative-shift took place on onset potential that was further decreased to 0.31 VRHE. The vastly enhanced PEC performance was also prioritized to those of Co and Mn single relatives. This work demonstrated that the synergistic BiVO4/CoMn-LDH as a capable candidate material, can be utilized for effective PEC water splitting.  相似文献   

12.
WO3 has been recognized as a promising photoanode for the conversion of solar energy to hydrogen energy through photoelectrochemical water splitting. Herein, Zn-WO3 nanorod arrays were synthesized by a two-step solvothermal method and then decorated with FeOOH and CoOOH dual co-catalysts layer through electrodeposition. Characterizations confirm the presence of abundant surface oxygen vacancies in Zn-WO3, leading to the increase of carriers with high mobility and thus improving the separation (from 63.7% to 92.0%) and injection (from 61.9% to 95.3%) efficiency of carriers. Meanwhile, the dual co-catalysts layer accelerates the transfer of the hole at the interface and inhibits the photocorrosion. Consequently, the optimal 9-Zn-WO3-Fe/Co exhibits the photocurrent of 3.63 mA/cm2 at 1.23 V vs. RHE, which is 90.7% of the theoretical value of WO3 (ca. 4.0 mA/cm2). This work constructs a highly efficient and stable WO3 photoanode by an integration strategy of transition metal doping and dual co-catalysts modification.  相似文献   

13.
Hierarchical architectures consisting of one-dimensional (1D) nanostructures are of great interest for potential use in energy and environmental applications in recent years. In this work, hierarchical tungsten oxide (WO3) has been synthesized via a straightforward, template-free, hydrothermal route from ammonium metatungstate hydrate and implemented in photoanode fabrication for solar water oxidation in photoelectrochemical cells and photocatalytic oxidation of organic pollutant. The flower-like WO3 micro-patterns are constructed by self-organized nanoscale length 1D building blocks, which are single-crystalline in nature, grown along (001) direction and confirm an orthorhombic crystal phase. Time-dependent experiments have been conducted to demonstrate their morphology evolution. The hierarchical architecture based photoanodes produce higher photocurrent (2-fold high) than the nanoparticles based photoanodes from solar water oxidation. The photon to current conversion efficiency achieved with the hierarchical architectures is 45% at 400 nm. The enhanced activity can be attributed to improved charge-separation by superior charge transportation through single-crystalline 1D building blocks.  相似文献   

14.
Nanoarray films have received great attention in solar water splitting due to their high surface area and excellent photoelectrochemical (PEC) performance. However, it is difficult to further increase the surface area of the nanoarray film. In this work, we demonstrate an in-situ surface nanoetching method (WO3→WO3/Bi2WO6→WO3/Bi2S3→etching WO3) to increase surface area of WO3 nanosheet array film. The characterization results indicate rougher and more uneven surface of the etched WO3 (E-WO3) film compared with the pristine WO3 film. Moreover, the photocurrent density of E-WO3 film is about 0.40 mA cm?2 at 1.23 V (vs. RHE) under light illumination without cocatalyst, which is 2.7 times higher than that of pristine WO3 film. This may be due to an increased surface area of the E-WO3 photoanode, which provides more active sites for the catalytic reactions and accelerates the charge transfer. This research can provide a simple and effective method to further increase the surface area of the nanoarray photoelectrode.  相似文献   

15.
In this study, a new photoelectrochemical cell based on overall splitting of water into oxygen and hydrogen is constructed to obtain an improved photocurrent under a visible range of light. The photoanode was obtained by a gold electrode (GE) modified with carboxylic acid functionalized SH-Calix-4-arene-COOH and IrO2 nanoparticles attached light absorbing cyanine dye via polymeric oligoaniline linkages. The conductive polymer, 4- (4H-Dithieno [3,2-b: 2 ′, 3′-d] pyrrol-4-yl)aniline, was coated on GE using electropolymerization and used as a photocathode after platinum nanoparticles (Pt) were attached on the surface. The system was illuminated under the visible light, and the water was oxidized via IrO2 catalyst to produce hydrogen on the photocathode side while oxygen on the photoanode. A photocurrent density of 182.03 μA cm−2 was obtained by direct transfer of electrons without using a mediator. The bilirubin oxidase (BOx) enzyme was successfully used to remove excess oxygen from the reaction chamber and a further increase in photocurrent was reached up to 272.44 μA cm−2. Hydrogen production in the reaction chamber was measured by gas chromatography at different time intervals and a maximum of 1.25 × 10−8 mol cm−2 was obtained.  相似文献   

16.
Surface decoration of photoanodes with oxygen evolution cocatalysts is an efficient approach to improve the photoelectrochemical water splitting performance. Herein, ultrafine CoOx was selectively immobilized on the surface of BiVO4/WO3 photoanode by using the photogenerated holes to in-situ oxidize Co4O4 cubane. The composited photoanode (CoOx/BiVO4/WO3) displayed an enhanced photoelectrochemical (PEC) water oxidation performance, with a photocurrent density of 2.3 mA/cm2 at 1.23 VRHE under the simulated sunlight irradiation, which was 2 times higher than that of bare BiVO4/WO3. The characterization results for the morphological, optical and electrochemical properties of the photoelectrodes revealed that, the enhanced PEC performances could be attributed to the improved charge carrier separation/transport behaviors and the promoted water oxidation kinetics when the photoelectrodes were loaded with CoOx.  相似文献   

17.
A ternary Ag/TiO2/CNT photoanode was prepared by grafting Ag nanoparticles on the surface of as-synthesized TiO2/CNT nanocomposite for the photoelectrochemical (PEC) water splitting under visible light irradiance. The ternary composite photoanode was observed to generate four times higher photocurrent density compared to binary TiO2/CNT nanocomposite under visible light irradiance. The Ag nanoparticles on the surface of nanocomposite act as a surface plasmon resonance (SPR) photosensitizer under visible light. The enhanced photocurrent density of Ag/TiO2/CNT ternary photoanode is attributed to the increased light absorption in the visible region, decrease in band-bending and effective interfacial electron transfer due to the synergetic effect of Ag nanoparticles and CNTs. The enhanced charge transfer within the Ag/TiO2/CNT was also confirmed by the electrochemical impedance spectroscopy. This work demonstrates a feasible route to improve the PEC performance of TiO2 towards water splitting under sunlight irradiation.  相似文献   

18.
A highly efficient inverse-opal structured BiVO4/WO3 photoanode and a MnO2/graphene oxide (GO) nanocomposite modified cathode were successfully synthesized in this paper. The optimized BiVO4/WO3 inverse opal photoanode achieved a photocurrent density of ∼5.04 mA/cm2 at 1.2 V vs. Ag/AgCl under simulated AM 1.5 illumination, which was 2.84 and 2.36 times higher than that of WO3 inverse opal photoanode and BiVO4/WO3 nanoflake photoanode, respectively. The BiVO4/WO3 inverse opal photoanode was coupled with the MnO2/GO modified cathode to build up a novel visible-light responsive photocatalytic fuel cell (PFC) system. The as-established PFC showed outstanding power production performances in comparison with the PFC equipped with a bare MnO2 modified cathode. For example, in the former PFC system, the maximum power density and the short circuit current density were ∼66.2 μW/cm2 and ∼593.5 μA/cm2, respectively, for comparison, in the latter PFC, the values were ∼30.1 μW/cm2 and ∼255.9 μA/cm2, respectively. The degradation experiment for Rhodamine B confirmed successful application of the as-established PFC in pollutant degradation. The mechanism for the significantly enhanced photoelectrocatalytic performances of the PFC was elucidated. The PFC system presented in this paper opened up a new prototype in developing highly efficient devices for energy conversion and environmental protection.  相似文献   

19.
Due to its poor bulk charge separation efficiency, the photoelectrochemical (PEC) performance of pristine hematite prepared directly from an electrodeposited Fe film is limited. Au-modification of hematite via a simple immersion method improves the PEC performance two-fold to 0.31 mA cm−2. The Au nanoparticles deposited from HAuCl4 act as plasmonic photosensitizers and electron collectors to improve the light absorption and bulk charge separation efficiency of the photoanode. In addition, the increase in the (110) plane and specific surface area induced by HAuCl4 enhances the bulk charge separation efficiency. After further modification with Ti, the photocurrent response of the resulting Ti/Au/α-Fe2O3 photoanode improves to 0.51 mA cm−2; this increase is attributed to its increased light absorption, bulk charge separation efficiency (ηbulk), and surface charge injection efficiency (ηsurface). In this work, the effect of Au and Ti on the crystalline structure, morphology and PEC performance of the novel electrodeposited hematite photoanode are investigated by systematical characterization.  相似文献   

20.
Conversion of solar energy into hydrogen energy via photoelectrochemical (PEC) water splitting is one of the most promising approaches for generation of clean and sustainable hydrogen energy in order to address the alarming global energy crisis and environmental problems. To achieve superior PEC performance and solar to hydrogen efficiency (STH), identification, synthesis, and development of efficient photoelectrocatalysts with suitable band gap and optoelectronic properties along with high PEC activity and durability is highly imperative. With the aim of improving the performance of our previously reported bilayer photoanode of WO3 and Nb and N co-doped SnO2 nanotubes i.e. WO3-(Sn0.95Nb0.05)O2:N NTs, herein, we report a simple and efficient strategy of molybdenum (Mo) doping into the WO3 lattice to tailor the optoelectronic properties such as band gap, charge transfer resistance, and carrier density, etc. The Mo doped bilayer i.e. (W0.98Mo0.02)O3-(Sn0.95Nb0.05)O2:N revealed a higher light absorption ability with reduced band gap (1.88 eV) in comparison to that of the undoped bilayer (1.94 eV). In addition, Mo incorporation offered improvements in charge carrier density, photocurrent density, with reduction in charge transfer resistance, contributing to a STH (~3.12%), an applied bias photon-to-current efficiency (ABPE ~ 8% at 0.4 V), including a carrier density (Nd ~ 7.26 × 1022 cm?3) superior to that of the undoped bilayer photoanode (STH ~2%, ABPE ~ 5.76%, and Nd ~5.11 × 1022 cm?3, respectively). The substitution of Mo6+ for W6+ in the monoclinic lattice, forming the W–O–Mo bonds altered the band structure, realizing further enchantments in the PEC reaction and charge transfer kinetics. Additionally, doped bilayer photoanode revealed excellent long term PEC stability under illumination, suggesting its robustness for PEC water splitting. The present work herein provides a simple and effective Mo doping approach for generation of high performance photoanodes for PEC water splitting.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号