首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
In the present paper the attention is focused on the effect of small cavities inside in-line tube banks on acoustic resonance which occurred in the two-dimensional model of boiler. We measured the sound pressure level, the amplitude and the phase delay of acoustic pressures and the gap velocity. As a result, we found many peak frequencies of sound pressure level with different Strouhal numbers, mainly about S1=0.15, 0.26 and 0.52. The variation of SPL for S,=0.26, 0.52 components in the tube banks with cavities was the same as the result of no cavities. The existence of cavities inside in-line tube banks caused the resonance of St=0.15. And the acoustic resonance of the first mode in the transverse direction was generated if the small cavities existed inside the tube banks. This resonance was not generated from the tube banks of no cavities. The resonance onset velocity in the transverse mode was fairly slower than that of no cavities. It was easy to generate acoustic resonance when there were small cavities inside in-line tube banks.  相似文献   

2.
In the present paper,the attention is focused on the characteristics of lightweight materials collection in the duct using acoustic resonance phenomena.The acoustic resonance was excited by using a controlled speaker at the middle of a test duct.We measured the sound pressure level,frequency response characteristics,acoustic damping ratio,mode shape,and lightweight materials response to acoustic resonance excited by a speaker.As a result,the acoustic damping ratio decreased as the mode number of acoustic re...  相似文献   

3.
The present study focuses on the prediction of acoustic absorption performance of a perforated plate with air jets by theoretical calculations.In addition,we experimentally measured the flow rate,internal pressure,acoustic pressure,and transfer function using an acoustic impedance tube.The normal incidence absorption coefficient was calculated from the measured transfer function using transfer function methods.We investigated the influences of background air space,flow velocity,thickness,aperture rate,and aperture diameter of a perforated plate on the acoustic absorption characteristics.The frequency characteristics of the acoustic absorption coefficient showed a maximum value at a local frequency.As the background air space increased,the peak frequency of acoustic absorption characteristics decreased.As the flow velocity passing through the apertures increased,the peak level of the acoustic absorption coefficient also increased.The theoretical results agreed well with the experimental ones qualitatively.  相似文献   

4.
三叶膨胀管是一种新型强化传热管,针对纵向流换热器特点,设计了三种不同管束结构参数的三叶膨胀管自支撑纵向流换热器。应用FLUENT软件及Realizable k-ε湍流模型,对三种不同结构参数的三叶膨胀管换热器壳程强化传热特性展开了数值模拟,并通过与实验数据的对比,验证了计算模型的可靠性。计算了不同壳程介质流速下,三叶膨胀管换热器壳程的换热系数与压降值,并获得了壳程流体流线以及相应的温度场、速度场和二次流分布图。结果发现,在壳程水流速一致的情况下,管束横向间距越大的三叶膨胀管换热器,壳程拥有更高的综合换热性能和更低的压降值,但相应地,换热系数也更低。流场分析显示,壳程流体流线呈现出三维纵向旋流形态,二次流的出现改变了速度场和温度场分布,二次流的强度随着管束横向间距的减小而增大。  相似文献   

5.
针对燃用航空煤油的贫预混预蒸发模型燃烧室的振荡燃烧特性开展了实验研究。实验表明:在相同的燃烧室入口空气燃料混合物流速下,随着当量比的增加,燃烧室振荡燃烧的振荡主频从132 Hz增加到144 Hz,但燃烧室的均方根脉动压力幅值却从1 464 Pa下降到342 Pa。在当量比不变情况下,入流空气燃料混合物流速较低时,容易引发振荡燃烧现象,而当入流空气燃料混合物流速较高时,则燃烧会变得稳定。分析了整个燃烧实验装置的前4阶轴向声学模态频率,发现实验中所激励出的振荡燃烧主频和第二阶轴向声学模态频率吻合的很好。  相似文献   

6.
Using the three-dimensional (3D) modeling software Gambit, a mathematical model of a circumferential overlap trisection helical baffle shell-and-tube heat exchanger (cothSTHX) was developed with 34 tubes and three pulling rods with an equilateral triangle tube layout and a baffle incline angle of 20°. The numerical simulation of flow and thermal performances was performed with the analysis software Fluent. The temperature, pressure, and velocity nephograms are shown for different slices, including spiral, concentric hexagon longitudinal, meridian, eccentric longitudinal, and transverse slices. The nephograms of temperature, pressure, and velocity with superimposed velocity vectors vividly display the important parameters of the cothSTHX. The “Dean vortex secondary flow” is a key mechanism to enhance the heat transfer in heat exchangers, which is clearly depicted to show that the spiral fluid flows outward under the centrifugal force, then flows back to the axis under the radial differential pressure, forming a single vortex in each helix cycle. The structure of circumferential overlap baffles restricts the shortcut leakage flow, and the flow pattern in the cothSTHX is very close to “plug flow” on the unfolded hexagon slices.  相似文献   

7.
采用大涡模拟和声类比的方法,以NACA0018翼型为研究对象,研究脊状结构对翼型远场噪声的影响。分别模拟来流速度为12和24 m/s,在6°攻角下布置脊状结构的翼型流场,对应的基于弦长雷诺数约为8.0×104和1.6×105。通过FW-H方程计算大涡模拟提取的声源项,得到Riblet-Q和Riblet-H翼型的流场和声场。非定常流场计算结果表明:6°攻角下Riblet-H翼型能够改善翼型边界层分离情况,抑制涡结构脱落,从而减小翼型表面压力脉动和接收点处声压波动,同时能提高翼型的气动性能。逆压梯度段脊状结构可有效减小频率在0~3000 Hz内的噪声。进一步研究表明,该状态下的噪声主要由边界层引起的涡脱落噪声主导。  相似文献   

8.
In our previous study, the effects of the interval between the cylinder and the airfoil on the aerodynamic sound were investigated and compared with the cases of single circular and single airfoil. In this study, the effects of the attack angle of the airfoil located downstream on the characteristics of aerodynamic sound and the wake structure are investigated at a given interval between the cylinder and the airfoil. It is found that the sound pressure level of DFN and the peak frequency decrease with increasing attack angle of airfoil because of the diffusive wake structure due to the increased back pressure of circular cylinder, which is caused by the blocking effect of airfoil. It is shown that the sound sources are corresponded to the attack points of shedding vortex form the upstream circular cylinder to the downstream airfoil. We conclude that the pressure fluctuation at the airfoil surface effects on the sound pressure level, from the flow visualizations and the exploration test of sound source.  相似文献   

9.
试验研究了基于Rijke管的自激式脉动燃烧流化床的流化脉动特性。是否激起以基波为主的压力、声音等脉动信号是脉动的判断依据,因此试验主要研究了脉动的基波特性。脉动的压力值是激起的各次谐波声压和炉膛的原有压力的叠加,通过傅立叶转变对压力进行了频谱分析。实验还研究了不同床层高度和流化风速对脉动特性的影响,并定性分析了优化流化脉动,减少声损失的途径。  相似文献   

10.
The main source of the noise of an axial flow fan is the fluctuating pressure field on blade surfaces caused by the shedding of vortices at the trailing edge of blades. An analytical model to predict the vortex shedding noise generated at the trailing edge of blades of axial flow fans was proposed by Lee in 1993. In this model, for mathematical convenience, an idealized vortex street is considered. However, the agreement between the analytical results and the experimental data needs to be improved because of the simplification about the Karman vortex street in the wake of blade. In the present study, a modified model is proposed based on the prediction model by Lee. The boundary layer theory is used to analyze and calculate the boundary layer development on both the pressure and the suction sides of blades. Considering the effect of boundary layer separation on the location of noise source, the predicted overall sound pressure level compares favorably with the experimental data of an axial fan. In the calculation of A-weighted sound pressure level (LA), considering the effect of static pressure on radiate energy, the predicted broadband noise with the modified model compares favorably with the experimental data of a multiblade centrifugal fan.  相似文献   

11.
This paper reports the effect of changing the aspect ratio on the heat transfer and flow quantities over in-line tube banks. Two types of in-line arrangements were employed; square and non-square configurations. The models that were examined are a standard k-ε model, SST k-ω model, v2-f model, EB k-ε model and EB-RSM model. The closer results to the experimental data and LES were obtained by the EB k-ε and v2-f models. For the square pitch ratios, the solution has faced a gradual change from a strong asymmetric to asymmetric and then to a perfect symmetry. The strong asymmetric solution was found by the very narrow aspect ratio of 1.2. However, the behaviour of cases of 1.5 and 1.6 became less strong than that predicted in the case of 1.2. In the larger aspect ratio of 1.75, the flow behaviour is seen to be absolutely symmetric for all variables under consideration except Nusselt number. For the very large pitch ratio of 5, the flow has recorded maximum distributions for all parameters on the windward side of the central tube with a perfect symmetric solution around the angle of 180° while the vortex shedding frequency has recorded minimum value and the Strouhal number; therefore, has given the smallest value. However, for the non-square pitch ratio of constant transverse distance, the solution is still asymmetric for all parameters with merely one stagnation at the angle of 52° at the case of the 1.5 × 1.75 while by increasing the longitudinal distance to 2 and 5, the solution provided a comprehensive symmetry for all variables with two vortices are fully developed mirrored in shape on the leeward side of the central tube. On the contrary, for the non-square pitch ratio of constant longitudinal distance, the flow of the case of 1.75 × 1.5 provided two stagnation locations at around 52° and 308° with a very similar solution to the case square ratio of 1.75 for all variables whereas by increasing the transverse distance to 2 and 5, the solution recorded was not perfectly symmetric resulting in two different vortices and one stagnation position located at the leading edge of the cylinder provided by the case of 5 × 1.5. In terms of vortex shedding effect, the reduction in the Strouhal number at a constant transverse pitch is less steep than those at a constant longitudinal pitch.  相似文献   

12.
为降低水平轴风力机叶片的气动噪声,受鸮类静音飞行能力的启发,提取鸮类翅膀羽毛的非对称锯齿结构,并重构于风力机叶片尾缘处。采用大涡模拟(LES)和FW-H方程对改型叶片和原型叶片的流场及声场特性分别进行研究。同时通过改变非对称锯齿尾缘的结构参数,以探究不同锯齿夹角、锯齿宽度和锯齿间距对非对称锯齿尾缘的降噪效果的影响。结果显示:非对称锯齿尾缘具有较好的降噪效果,尤其是在低频和中频区域,总声压级最多可降低10 dB。当锯齿夹角分别为30°、40°和50°时,随着锯齿夹角的增加,噪声声压级在多数方位角下呈增加的趋势;锯齿宽度分别为10、12.5和15 mm时,随着锯齿宽度的增加,噪声声压级在多数方位角下明显降低;锯齿间距的改变,对0°方位角下的噪声声压级影响显著。而从涡分布图中可发现,非对称锯齿尾缘未改变叶片表面涡脱落的位置,但会减小涡结构和涡强度,增大涡间距,从而抑制噪声的产生。  相似文献   

13.
A flow resonance accompanied by the emission of acoustic tones occurs in an over-expanded convergent-divergent (C-D) nozzle when operated at comparatively low pressure ratios.This phenomenon is distinguished from conventional screech tones and is referred to as “transonic tones”.In contrast to screech tones,the peak resonant frequency for transonic tones increases with pressure ratio;the peak sound pressure level exceeds 110 dB.In this study,we investigated the basic characteristics of transonic resonance and tones using a circular C-D nozzle in an anechoic room.The effects of the boundary layer trip were also evaluated using a tripping wire for the suppressing transonic resonance and tones.The results of acoustic measurements show that several predominant peaks correspond to transonic tones.However,the boundary layer trip inside the nozzle effectively eliminated these tones and suppressed the unsteadiness of the flow inside the nozzle.  相似文献   

14.
Spinning detonations propagating in a circular tube were numerically investigated with a two-step reaction model by Korobeinikov et al. The time evolutions of the simulation results were utilized to reveal the propagation behavior of single-headed spinning detonation. Three distinct propagation modes, steady, unstable, and pulsating modes, are observed in a circular tube. The track angles on a wall were numerically reproduced with various initial pressures and diameters, and the simulated track angles of steady and unstable modes showed good agreement with those of the previous reports. In the case of steady mode, transverse detonation always couples with an acoustic wave at the contact surface of burned and unburned gas and maintains stable rotation without changing the detonation front structure. The detonation velocity maintains almost a CJ value. We analyze the effect of acoustic coupling in the radial direction using the acoustic theory and the extent of Mach leg. Acoustic theory states that in the radial direction transverse wave and Mach leg can rotate in the circumferential direction when Mach number of unburned gas behind the incident shock wave in the transverse detonation attached coordinate is larger than 1.841. Unstable mode shows periodical change in the shock front structure and repeats decoupling and coupling with transverse detonation and acoustic wave. Spinning detonation maintains its propagation with periodic generation of sub-transverse detonation (new reaction front at transverse wave). Corresponding to its cycle, whisker is periodically generated, and complex Mach interaction periodically appears at shock front. Its velocity history shows the fluctuation whose behavior agrees well with that of rapid fluctuation mode by Lee et al. In the case of pulsating mode, as acoustic coupling between transverse detonation and acoustic wave is not satisfied, shock structure of spinning detonation is disturbed, which causes failure of spinning detonation.  相似文献   

15.
张玲  谷豪飞 《太阳能学报》2023,44(1):171-178
以弧形锯齿尾缘叶片为研究对象,同时设置三角形锯齿尾缘和直尾缘叶片作为参照组,采用大涡模拟结合声类比方程的方法,对比分析不同攻角下3种叶片的声压级指向性、噪声频谱特性。通过分析3种叶片周围涡结构,进一步对弧形锯齿尾缘所特有的声学机理进行研究。结果表明:同三角形锯齿一样,弧形锯齿结构并未改变叶片声压级指向性呈偶极子分布的规律;弧形锯齿尾缘有效降低中高频段的噪声,低频段降噪效果不明显;锯齿结构影响尾缘处展向涡的发展,进而对叶片气动噪声产生影响,且弧形锯齿尾缘对尾部涡结构的影响程度大于三角形锯齿尾缘。  相似文献   

16.
In this study, high frequency oscillatory combustion in tubular flame burner was experimentally investigated using large scale 8- and 12-in. diameter tubular flame burners. The conditions for the high frequency oscillatory combustion were determined, and the pressure fluctuations were measured, on which spectral analyses were made. The results showed that a smooth laminar tubular flame could be established, however, high frequency combustion sound was emitted from the 8- and 12-in. burners when the air flow rates exceeded 650 and 1200 m3/h, respectively. Pressure fluctuation measurements and spectral analyses showed that high frequency pressure fluctuations occurred simultaneously during the high frequency oscillation. The flame images were also obtained with a high speed video camera. The flame surface was found to be notably corrugated and the symmetry was broken during the oscillation. By assuming that the tubular flame burner is a simple tube, the natural frequencies of the burners were determined using the fundamental theory of the acoustic resonance in a cylindrical cavity, and the experimental peak frequencies in the spectra were compared with the natural frequencies. As a result, it was found that the high frequency oscillations in both the burners were identified as the tangential/radial mode acoustic resonant oscillations. It was further found that the tangential first mode of oscillation, which had an asymmetric structure, preceded the higher modes of oscillation which indicated that the mode dominated the occurrence of the high frequency oscillation. To verify the occurrence of the tangential first mode oscillation, the pressure fluctuations were measured with two pressure sensors installed at opposed locations. The results showed that the phase of the oscillation was 180° difference, and the asymmetric structure confirmed the occurrence of the tangential first mode of oscillation.  相似文献   

17.
对倾斜角20°有34根管子的周向重叠三分螺旋折流板换热器进行了数值模拟研究,通过在三分螺旋折流板换热器壳侧通道内偏心纵向切面和横切面以及六边形纵向切面上速度矢量流场和压力云图的叠加展示,不仅呈现了壳侧总体螺旋速度的周向分量的轨迹,而且从所呈现的轴向和径向速度分量揭示了二次流和相邻折流板V型缺口处逆向泄漏的踪迹.研究结果表明:流体在螺旋通道内在离心力作用下呈现向外扩张的流动趋势,然后在外围高、中心低的压力分布作用下沿着靠近折流板附近的流速较低的区域向心流动返回轴中心,形成单涡型迪恩二次流;二次流增强了流体的掺混,从而有利于强化传热.  相似文献   

18.
为了研究偏心间隙结构对阀门流场及管阀系统辐射声场的影响,采用流声固耦合的联合仿真方法,对含有偏心间隙结构和不含有此结构的两种流道模型展开对比分析。结果表明:两种模型的流量、阻力系数特性曲线均在球阀开启50°左右时出现转折点;偏心间隙处产生的高速射流会对阀内流场产生剧烈扰动,球阀腔体与下游管道连接处是阀内核心声源区;管阀系统的第1、第2阶模态振型为沿流道方向的振动,第3、第4阶振型为垂直于管道方向的振动;偏心半球阀的辐射噪声频谱呈宽频特性,高速射流对2 300~5 000 Hz范围内中高频段声压级幅值的提升有显著贡献;两种流道模型声压级频谱峰值点特征相似,与无偏心间隙模型的频谱规律相比,偏心间隙结构模型的频谱在相同的特征峰值点处对应更高的频率范围,且频谱响应曲线有整体右移的趋势;辐射噪声在偏心间隙结构存在的一侧具有显著的声学指向性。  相似文献   

19.
A ring fan is a propeller fan that applies an axial-flow impeller with a ring-shaped shroud on the blade tip side. In this study, the entire flow field of the ring fan is simulated using computational fluid dynamics (CFD); the accuracy of the CFD is verified through a comparison with the aerodynamic characteristics of a propeller fan of current model. Moreover, the aerodynamic noise generated by the fan is predicted on the basis of the wake characteristics. The aerodynamic characteristic of the ring fan based on CFD can represent qualitatively the variation in the measured value. The main flow domain of the ring fan is formed at the tip side of the blade because blade tip vortex is not formed at that location. Therefore, the relative velocity of the ring fan is increased by the circumferential velocity. The sound pressure levels of the ring fan within the frequency band of less than 200 Hz are larger than that of the propeller fan. In the analysis of the wake characteristics, it revealed that Karman vortex shedding occurred in the main flow domain in the frequency domain lower than 200 Hz; the aerodynamic noise of the ring fan in the vortex shedding frequency enlarges due to increase in the relative velocity and the velocity fluctuation.  相似文献   

20.
A laboratory-scale swirling burner, presenting many similarities with gas turbines combustors, has been studied experimentally using planar laser induced fluorescence (PLIF) on OH radical and acetone vapor in order to characterize the flame stabilization process. These diagnostics show that the stabilization point rotates in the combustion chamber and that air and fuel mixing is not complete at the end of the mixing tube. Fuel mass fraction decays exponentially along the mixing tube axis and transverse profiles show a gaussian shape. However, radial pressure gradients tend to trap the fuel in the core of the vortex that propagates axially in the mixing tube. As the mixing tube vortex enters the combustion chamber, vortex breakdown occurs through a precessing vortex core (PVC). The axially propagating vortex shows a helicoidal trajectory in the combustion chamber which trace is observed with transverse acetone PLIF. As a consequence, the stabilizing point of the flame in the combustion chamber rotates with the PVC structure. This phenomenon has been observed in the present study with a high speed camera recording spontaneous emission of the flame. The stabilization point rotation frequency tends to increase with mass flow rates. It was also shown that the coupling between the PVC and the flame stabilization occurs via mixing, explaining one possible coupling mechanism between acoustic waves in the flow and the reaction rate. This path may also be envisaged for flashback, an issue that will be more completely treated in a near future.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号