首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
以应用在水平轴风力机叶片上的层流翼型S809为研究对象,采用CFD数值模拟技术,结合ShearStress Transport(SST)湍流模型,数值计算了S809翼型的升阻力特性。在翼型设计中应用一种转捩延迟控制技术——射流技术,即在翼型上翼面添加射流口,并研究了射流口位置和射流速度对翼型S809气动特性的影响。结果表明:射流技术能够显著提高翼型升力,延缓翼型失速;在低攻角下,射流速度大于来流风速才能提升翼型升力;在失速前,翼型的升力系数和失速攻角随着射流速度的增大而增大,在原始翼型失速而带射流翼型未失速阶段,带射流翼型的阻力系数明显小于原始翼型;射流速度一定时,射流口位置适当靠前可增大翼型的失速攻角,射流口位置布置在翼型上翼面中后部能使翼型在失速前获得较大的升力系数。  相似文献   

2.
基于k-ω SST湍流模型,利用商业CFD工具ANSYS Fluent 16.0对DU35-17原始翼型、钝尾缘修型翼型及布置V型沟槽钝尾缘翼型进行数值模拟计算,对翼型改进前后的升阻力系数、流场分布和表面压力系数进行对比分析。结果表明,翼型在钝尾缘修型的同时布置V型沟槽,通过改变翼型尾缘处的压力分布和翼型表面的流动分布,对流动分离的抑制有积极影响;布置V型沟槽钝尾缘翼型能增大翼型上下翼面的压力系数差值,降低翼型边界层内因气体黏性所产生的流动减速现象,从而达到减阻增升的效果;布置V型沟槽可有效增大最大升力系数和失速攻角,减小前缘压力波动,提高翼型气动性能。  相似文献   

3.
涡流发生器作为一种有效的流动控制方法之一,已被成功应用于改善风电叶片的气动特性,众多研究表明,涡流发生器的使用可以有效延迟气流分离,提高升阻比。为了深入了解加装涡流发生器的增升减阻特性,本文以NACA63-415翼型为研究对象,通过数值模拟方法研究分析了不同形状、不同弦向安装位置和多个攻角下涡流发生器对风力机叶片气动特性的影响,结果表明:在不同形状、不同安装位置及攻角下涡流发生器均可有效抑制风力机叶片边界层分离、提高升阻比,其中20%翼型弦向处安装的涡流发生器增升减阻效果最好。  相似文献   

4.
《太阳能》2017,(8)
在计算流体力学(CFD)理论的基础上,利用FLUENT软件对NACA63-421翼型在不同的攻角下对其升阻特性进行数值模拟计算,并与相关文献试验值进行比对和分析,最后分析了翼型流场的速度矢量。结果表明:在小攻角下各湍流模型升、阻力系数的模拟值比较准确,大攻角下剪切力输送k-ω模型(简称SST k-ω模型)获得的升力系数比其他两个湍流模型更为准确;转捩k-kL-ω模型获得的阻力系数和升阻比较其他两个模型更加贴近试验值;各湍流模型获得的升、阻力系数以及升阻比随攻角变化趋势与试验值一致;在大攻角时翼型边界层出现了逆流和分离现象。  相似文献   

5.
为了改善风力机大厚度翼型的气动性能,采用零质量射流对翼型附近的流动进行流动控制。采用非定常雷诺时均模拟方法(URANS)对动态失速状态下带零质量射流的DU97-W-300翼型的绕流场进行数值模拟,并对比控制前和控制后的翼型气动特性。结果表明,随着射流折合频率的增加,翼型失速攻角逐渐增大,升力系数曲线的波动次数逐渐减小。零质量射流可以有效抑制流动分离,其抑制动态失速的能力随翼型折合频率的增加而增强,随激励器动量系数的增加而增强。  相似文献   

6.
基于被动流动控制理论及常用气动噪声预测方法,在S809翼型前缘吸力面附加微小翼型,以提高主翼抵抗流动分离的能力。采用数值模拟方法,在α=6°~24°来流攻角范围内计算复合翼的气动性能及噪声特性,并分析了流动控制机理。结果表明:在失速攻角之前,复合翼的气动性能表现优于原始翼型,有明显增升效果,但其气动噪声特性相比原始翼型较差;在大攻角下,前缘小翼的存在将主翼来流失速临界攻角由α=16°延缓至α=22°,且有明显降噪作用,复合翼相比原始翼型在接收点处的噪声总声压级最大可以减小7.23%。  相似文献   

7.
为了分析不同襟翼结构和安装位置对翼型附近流场的变化情况,以NACA0012翼型为研究对象,建立加装不同襟翼翼型的二维计算模型,使用计算流体力学软件Fluent求解定常、不可压缩雷诺平均的N-S方程并且采用Spalart-Allmaras湍流模型计算翼型在0°到18°攻角α范围下翼型升阻力系数、升阻比、表面压力系数以及翼型附近的流场流线分布,分析翼型尾缘附近不同位置处添加不同襟翼结构时其流场流动特性。结果表明:对于添加襟翼后各翼型,由于襟翼的存在,整个翼型形状发生改变,使翼型与襟翼连接处流场发生不同程度的突变,导致翼型尾缘附近的流场、压力场以及上下表面压力分布发生了显著的变化,尾缘Gurney襟翼突变程度大,流体较易发生分离;尾缘三角襟翼有个倾斜过程,减缓了流体分离,从而延迟了分离流动的攻角。小攻角(0°~4°)下尾缘三角襟翼的翼型有显著的增生效果。  相似文献   

8.
采用S-A和RNGK-ε湍流模型对风力机专用S832翼型的绕流流动建立了二维不可压缩湍流模型,利用计算流体力学软件Fluent,对两种模型进行数值模拟,得到了雷诺数为3×10^6时该翼型在-16°~30°攻角下的升力系数和阻力系数与来流攻角的关系以及压力分布图,并进一步分析了不同攻角下翼型表面压力分布特性,预测了大攻角(达30°)下翼型分离流动特性。结合NREL的试验数据,对两种湍流模型模拟的精度进行了分析比较,结果表明在小攻角范围内采用RNGK-~模型预测该翼型气动性,其结果更加有效。  相似文献   

9.
通过研究尾缘气动弹片对翼型动态失速特性影响,提出一种基于气动弹片的主动控制策略,使其于大攻角时抬起,小攻角时闭合。并采用计算流体动力学方法对比分析主动式气动弹片对不同厚度翼型抑制流动分离作用的效果。结果表明:对于薄翼型,发生动态失速时,气动弹片可延缓翼型尾缘涡旋与前缘主流涡的相互作用,减小翼型升力系数骤降幅度;随翼型厚度增加,流动分离点从翼型前缘转向后缘,气动弹片可有效分割较大分离涡,减轻流动分离程度,限制分离涡发展,同时抑制尾缘伴随小涡产生,提高翼型升阻比。  相似文献   

10.
以Spalart-Allmaras(S-A)湍流模型为计算模型,对风力机叶片NACA0018翼型在副翼摆角分别为0°、5°、10°和15°下的流体流动情况进行数值模拟,分析不同攻角下带副翼翼型上升阻力性能曲线以及翼型表面压力分布云图和流场流线图,研究不同摆角对带副翼翼型的空气动力学性能的影响。结果表明:相同攻角时,翼型的升力系数随着副翼摆角的增大而减小;副翼摆角的增大可以增大翼型的失速攻角,改善翼型周围流体的流动状况,提高翼型周围特别是副翼周围流体流动稳定性,抑制流动分离涡的形成。  相似文献   

11.
为改善风力机翼型气动特性,提出吹吸结合射流(Suction-Blow Combined Jet,SBCJ)方式,以S809为基础翼型,研究在不同攻角、射流动量系数及开孔位置时SBCJ的控制效果,分析其控制机理和影响规律.结果 表明:SBCJ可移除翼型吸力面低动量流体并改变尾缘库塔条件,从而显著增大翼面两侧压差,最终提升翼型气动性能;当射流动量系数较小时,翼型升力显著增大、修正阻力减小且流动分离减弱;当射流动量系数为0.01、吸气孔距前缘0.15c、吹气孔距尾缘0.2c、攻角为10°时,翼型修正升阻比提升率最大.  相似文献   

12.
基于Spalart-Allmaras(S-A)湍流模型,针对NACA0012、NACA0015和NACA0018三种厚度对称襟翼翼型在相对翼缝宽度分别为10‰、15‰和20‰下翼型周围流体的流动情况进行数值模拟,对比分析三种对称翼型在攻角(AOA)为-9°~17°下的升、阻力特性曲线以及翼型周围压力云图和流线图,研究厚度影响襟翼翼型空气动力学特性的流体流动机理。结果表明:襟翼翼型的失速攻角随着翼型厚度的增大而增大,翼型厚度的增大可提高翼型周围特别是襟翼周围流体流动稳定性,使得翼型发生流动分离的分离点向尾缘襟翼处移动,减小尾缘分离涡的影响范围和结构复杂度。  相似文献   

13.
采用非线性k-ε和q-ω双方程湍流模型,利用高收敛率、高精度和高分辨率的数值算法,对二维NRELS809翼型在0~18°攻角范围内的低速绕流进行了数值模拟,将翼型的升阻特性的计算值与实验值进行了比较。与采用线性k-ε和q-ω双方程湍流模型的计算结果对比表明,当翼型流动发生分离时,采用非线性双方程湍流模型可以明显地改进计算精度。本文采用的数理模型与数值方法可有效地用于风力机翼型大尺度分离流场的预测。  相似文献   

14.
针对风力机专用S832翼型绕流流动建立了二维不可压缩湍流模型,利用计算流体力学软件Fluent,分别选用S—A、RNGk-ε两种湍流模型对S832进行数值模拟,对比了两种湍流模型对气动模拟精度的影响,得出了雷诺数为3×10^6时,该翼型在-16°~30°攻角下的升力系数和阻力系数随来流攻角的变化关系及压力分布图,分析了不同攻角下翼型表面压力分布特性并进一步预测了大攻角(达30°)下翼型分离流动特性.并与NREL的试验数据进行比较,研究结果表明:RNGk—ε在预测该翼型小攻角范围气动性方面更加有效。  相似文献   

15.
黄宸武  廖猜猜  杨科 《太阳能学报》2016,37(7):1689-1694
通过风洞实验测量光滑与粗糙S809翼段翼尖部位尾流横截面的速度场和翼型表面压力分布获得翼尖涡涡量、涡心位置及翼型压差升阻力系数。经分析比较,得出该翼型翼尖涡涡量和涡心位置随雷诺数和攻角的变化趋势以及翼尖涡对压差升阻力系数影响的规律。  相似文献   

16.
针对在大来流攻角下,NACA0015翼型发生的流动分离现象,在翼型吸力面前缘加装微小平板研究平板不同加装位置对翼型流动控制效果的影响。在风洞中,通过测力天平,得到翼型升阻力特性变化曲线;再通过烟线实验进行流场可视化。研究表明:当微小平板水平加装位置X=0,垂直加装位置Y=0.07c(c为翼型弦长)时,控制翼型流动控制效果最佳,失速攻角推迟了19°;在翼型前缘正前方或正上方一定距离加装微小平板,都能有效抑制翼型吸力面的流动分离,提高翼型的气动性能。  相似文献   

17.
为改善流动分离造成叶片气动效率降低,基于鸟鹰类翅膀羽毛在大范围流动分离时自适应弹起的特点,在翼型吸力面设置功能类似羽毛的弹片。弹片在未发生大范围流动分离时贴附翼型表面,使原始翼型轮廓发挥作用,并于攻角增大时弹起以改善翼型失速特性。以NREL S809为原始翼型,对不同攻角下多个弹片角度进行了数值计算,并对所得气动参数进行分析。研究表明:在大范围流动分离时,弹片可有效提高升阻比,最高达50%~60%;气流贴附弹片流动至其末端,从而抑制和拖延了涡的发展,进而提高了流场稳定性,使波动更规律且幅度更小;所研究攻角范围内,改善翼型气动性能的最佳弹片角度随攻角呈近似线性变化。  相似文献   

18.
小攻角下翼型边界层分离对数值模拟结果的影响研究   总被引:1,自引:0,他引:1  
基于三维RANS方程,分别选用RNG k-ε和RSM(雷诺应力模型)两种湍流模型对NREL S809翼型进行了CFD数值模拟,得到翼型的气动性能,并对比其计算结果。结果表明:随着攻角的增大,翼型边界层会产生分离。翼型边界层分离前,两种湍流模型模拟结果与实验数据有一定误差,但基本一致。翼型边界层分离后,模拟结果与实验数据相差较大,特别是随着攻角增大,流场内湍流运动加剧,模拟结果误差也随之增大。因此,边界层的分离是影响模拟结果的重要因素。  相似文献   

19.
风力机翼型气动性能预估和分析   总被引:1,自引:0,他引:1  
采用粘性-无粘迭代程序XFOIL和CFD方法不同湍流模型预估了某改型风力机专用翼型的气动性能,通过和风洞实验结果的比较分析了不同计算方法线性区的预测精度和大攻角失速下的适用性,并研究了前缘粗糙度对翼型性能的影响.结果表明:在线性攻角下定常雷诺平均方程加合适湍流模型可精确预估翼型升力,SA模型升力结果略好于SST模型,XFOIL预估结果基本可信更适合初步设计时定性分析;大攻角失速下必须考虑流动分离的非定常特性,大涡模拟可以更好地反映流场发展过程;前缘粗糙度一定程度上降低了翼型气动性能,这种影响随翼型厚度的增加而加剧,改型翼型对前缘粗糙度敏感性不大,满足使用要求.  相似文献   

20.
采用数值模拟方法研究襟翼改型对S809翼型气动特性的影响,并对襟翼的增升机理进行探讨。研究结果表明,在中小攻角范围内,安装角度为90°和60°的襟翼具有一定的增升效果,可使最大升力系数分别提高5.66%和3.95%;通过分析翼型压力系数分布,发现尾缘附近压力面压力变大,导致升力系数提高;但是在大攻角下改型襟翼导致升力系数减小。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号