首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The objective of the present work is to investigate experimentally the thermal behavior of a packed bed of combined sensible and latent heat thermal energy storage (TES) unit. A TES unit is designed, constructed and integrated with constant temperature bath/solar collector to study the performance of the storage unit. The TES unit contains paraffin as phase change material (PCM) filled in spherical capsules, which are packed in an insulated cylindrical storage tank. The water used as heat transfer fluid (HTF) to transfer heat from the constant temperature bath/solar collector to the TES tank also acts as sensible heat storage (SHS) material. Charging experiments are carried out at constant and varying (solar energy) inlet fluid temperatures to examine the effects of inlet fluid temperature and flow rate of HTF on the performance of the storage unit. Discharging experiments are carried out by both continuous and batchwise processes to recover the stored heat. The significance of time wise variation of HTF and PCM temperatures during charging and discharging processes is discussed in detail and the performance parameters such as instantaneous heat stored and cumulative heat stored are also studied. The performance of the present system is compared with that of the conventional SHS system. It is found from the discharging experiments that the combined storage system employing batchwise discharging of hot water from the TES tank is best suited for applications where the requirement is intermittent.  相似文献   

2.
A computational fluid dynamics (CFD) model was developed for the simulation of a phase change thermal energy storage process in a 100 l cylindrical tank, horizontally placed. The model is validated with experimental data obtained for the same configuration. The cold storage unit was charged using water as the heat transfer medium, flowing inside a horizontal tube bundle, and the selected phase change material (PCM) was microencapsulated slurry in 45% w/w concentration. The mathematical model is based on the three-dimensional transient Navier–Stokes equations with nonlinear temperature dependent thermo-physical properties of the PCM during the phase change range. These properties were experimentally determined using analytical methods. The governing equations were solved using the ANSYS/FLUENT commercial software package. The mathematical model is validated with experimental data for three different flow rates of the heat transfer fluid during the charging process. Bulk temperature, heat transfer rate and amount of energy stored were used as performance indicators. It was found that the PCM bulk temperatures were predicted within 5% of the experimental data. The results have also shown that the total accumulated energy was within 10% of the observed value, and thus it can be concluded that the model predicts the heat transfer inside the storage system with good accuracy.  相似文献   

3.
A number of solar domestic hot water systems and many combined space and water heating systems have heat exchangers placed directly in the storage fluid to charge and/or discharge the tank. Operation of the heat exchanger produces a buoyancy-driven flow within the storage fluid. With a view toward controlling the flow field to increase heat transfer, a cylindrical baffle is inserted in a 350 l cylindrical storage tank. The baffle creates a 40 mm annular gap adjacent to the tank wall. A 10 m-long, 0.3 m2 copper coil heat exchanger is placed in the gap. The effects of the baffle on the transient heat transfer, delivered water temperature, heat exchanger effectiveness, and temperature distribution within the storage fluid are presented during discharge of initially thermally stratified and fully mixed storage tanks. The baffle increases the storage side convective heat transfer to the heat exchanger by 20%. This increase is attributed to higher storage fluid velocities across the heat exchanger.  相似文献   

4.
蓄热水箱作为太阳能供暖系统的重要核心设备,其性能直接影响着储能系统的整体运行效率。设计一种基于圆柱形相变单元的相变储热装置,并搭建相变蓄热水箱性能测试平台,通过单一控制变量法得到储热装置放热过程的温度变化曲线。研究表明:对于空间一定的储热装置,在等质量相变材料(PCM)时,相变单元的直径对装置放热速率的影响较大;相变单元之间的间距对装置放热速率的影响较小;当增大换热流体(HTF)的入口流量及降低HTF入口温度时,能大大减少储热装置的放热时间,提高储热装置的整体性能。  相似文献   

5.
构建空气源热泵-相变蓄热水箱供暖系统,通过相变储能技术的合理应用,优化了太阳能、空气热能等非连续能源的供能方式,有效提高了建筑中可再生能源的利用率。相变蓄热系统采用了6 m3的保温水箱作为蓄热容器,选取46#石蜡为主要相变材料,304#不锈钢管为封装材料。建立蓄热系统的三维数学模型,采用有效热熔法对相变材料的焓值进行处理,运用Fluent数值模拟软件,研究相变蓄热系统的蓄放热性能。模拟结果显示,系统的蓄热时间为9.2 h,理想蓄热量为102.4 kW·h,能够单独提供低能耗建筑连续采暖11.1 h。空气源热泵-相变蓄热水箱供暖系统能实现大跨度的间歇供暖,在利用非连续能源供暖领域具有良好的前景。  相似文献   

6.
相变蓄热水箱可有效调节集热器和负载端之间供求不匹配的矛盾,设计了环形布水器进水结构和蓄热水箱,并搭建相变蓄热水箱性能测试平台,对比直进型蓄热水箱和环形布水器蓄热水箱的温度分层,探究孔隙率、进水流速和变温进水等变量下相变蓄热水箱的热分层和相变球的释热性能。实验研究表明:环形布水器能有效抑制进水水流对温度场的扰动,保持良好的温度分层,使相变球逐层放热,增大相变球与传热流体(HTF)的温差,提高释热效率,保证高温水能够源源不断地提供给用户端;孔隙率越小分层效果越好;流速越大分层效果越差,但是释热效率有所提高;变温进水比恒温进水,释热时间延长约40%。  相似文献   

7.
8.
An analytical and computational model for a solar assisted heat pump heating system with an underground seasonal cylindrical storage tank is developed. The heating system consists of flat plate solar collectors, an underground cylindrical storage tank, a heat pump and a house to be heated during winter season. Analytical solution of transient field problem outside the storage tank is obtained by the application of complex finite Fourier transform and finite integral transform techniques. Three expressions for the heat pump, space heat requirement during the winter season and available solar energy are coupled with the solution of the transient temperature field problem. The analytical solution presented can be utilized to determine the annual variation of water temperature in the cylindrical store, transient earth temperature field surrounding the store and annual periodic performance of the heating system. A computer simulation program is developed to evaluate the annual periodic water and earth temperatures and system performance parameters based on the analytical solution. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

9.
The phase change and heat transfer characteristics of a eutectic mixture of palmitic and stearic acids as phase change material (PCM) during the melting and solidification processes were determined experimentally in a vertical two concentric pipes energy storage system. This study deals with three important subjects. First is determination of the eutectic composition ratio of the palmitic acid (PA) and stearic acid (SA) binary system and measurement of its thermophysical properties by differential scanning calorimetry (DSC). Second is establishment of the phase transition characteristics of the mixture, such as the total melting and solidification temperatures and times, the heat transfer modes in the melted and solidified PCM and the effect of Reynolds and Stefan numbers as initial heat transfer fluid (HTF) conditions on the phase transition behaviors. Third is calculation of the heat transfer coefficients between the outside wall of the HTF pipe and the PCM, the heat recovery rates and heat fractions during the phase change processes of the mixture and also discussion of the effect of the inlet HTF parameters on these characteristics. The DSC results showed that the PA–SA binary system in the mixture ratio of 64.2:35.8 wt% forms a eutectic, which melts at 52.3 °C and has a latent heat of 181.7 J g−1, and thus, these properties make it a suitable PCM for passive solar space heating and domestic water heating applications with respect to climate conditions. The experimental results also indicated that the eutectic mixture of PA–SA encapsulated in the annulus of concentric double pipes has good phase change and heat transfer characteristics during the melting and solidification processes, and it is an attractive candidate as a potential PCM for heat storage in latent heat thermal energy storage systems.  相似文献   

10.
相变微胶囊(microencapsulated phase change material,MPCM)在建筑节能领域应用广泛,为研究其传热特性,搭建了以水为换热流体(heat transfer fluid,HTF),微胶囊悬浮液为储能介质的潜热储能(latent thermal energy storage,LTES)系统。在实验过程中,通过改变换热流体的进口初始温度以及搅拌器的搅拌速率,获得了MPCM悬浮液的温度变化规律并计算了MPCM悬浮液的平均充放冷速率。实验结果表明:在充冷过程中,MPCM相变时温度变化速率减缓,相变温度区间较大,而在放冷过程中,MPCM相变时温度保持恒定,相变温度区间较小;未搅拌时,MPCM悬浮液中温度梯度较大,传热能力较差;搅拌时,MPCM悬浮液混合均匀,其温度梯度很小,传热能力较强;增加搅拌器的搅拌速率及水与相变微胶囊悬浮液的温差均可以提高MPCM的充放冷速率。  相似文献   

11.
Due to its large apparent specific heat during the phase change period, microencapsulated phase change material slurry (MPCMS) has been suggested as a medium for heat transfer. In this paper, the convective heat transfer characteristics of MPCMS flowing in a circular tube were experimentally and numerically investigated. The enhanced convective heat transfer mechanism of MPCMS, especially in the thermal fully developed range, was analyzed by using the enthalpy model. Three kinds of fluid–pure water, micro-particle slurry and MPCMS were numerically investigated. The results show that in the phase change heat transfer region the Ste number and the Mr number are the most important parameters influencing the Nusselt number fluctuation profile and the dimensionless wall temperature. Reb, dp and c also influence the Nusselt number profile and the dimensionless wall temperature, but they are independent of phase change process.  相似文献   

12.
Thermal performance and phase change stability of myristic acid as a latent heat energy storage material has been studied experimentally. In the experimental study, the thermal performance and heat transfer characteristics of the myristic acid were tested and compared with other studies given in the literature. In the present study is included some parameters such as transition times, temperature range, and propagation of the solid–liquid interface as well as heat flow rate effect on the phase change stability of myristic acid as a phase change material (PCM). The experimental results showed that the melting stability of the PCM is better in the radial direction than the axial direction. The variety of the melting and solidification parameters of the PCM with the change of inlet water temperature is also studied. The results show that the better stability of the myristic acid was accomplished at low inlet water temperature compared with the obtained results at high inlet water temperature. We also observed that while the heat exchanger tube is in the horizontal position, the PCM has more effective and steady phase change characteristics than in the vertical position. The heat storage capacity of the container (PCM tube) is not as good as we expected in this study and the average heat storage efficiency (or heat exchanger effectiveness) is 54%. It means that 46% of the heat acrually lost somewhere.  相似文献   

13.
Heat transfer between two immiscible liquid phases in turbulent flow is of great interest in improving the residence time, compactness, and energy cost of cooling and heating processes. The high-efficiency vortex (HEV) device used here as a direct-contact heat exchanger (DCHE) is a generic multifunctional exchanger/reactor in which wall tabs generate longitudinal vortices responsible for convective radial transfer that enhance macro-mixing, phase dispersion and fast temperature homogenization in the flow.The experiments reported here concern a continuous flow of water in which an immiscible mineral oil is injected. The inlet water temperature ranges from 11 to 13 °C, and the inlet oil temperature from 40 to 48 °C; the flow Reynolds number varies between 7500 and 15 000. An algebraic one-dimensional thermal model accounting for the axial evolution of the phase temperatures coupled with drop breakup is developed and validated by the experimental thermal results in the DCHE. This model requires knowledge of the turbulent field in single-phase conditions; it can be adapted to other flow geometries and can be used as a sizing tool for engineering design.Despite the phase separation at the outlet, the DCHE is more efficient than a double-jacketed heat exchanger in terms of global Nusselt number. In addition, the HEV heat exchanger is energetically less costly than the other DCHE for the same heat-transfer capacity.  相似文献   

14.
The cylindrical latent heat storage tanks considered here are part of a domestic heating system. In this study, the performances of such energy storage tanks are optimized theoretically. Two different models describing the diurnal transient behaviour of the phase change unit were used. The first is suited to tanks where the phase change material (PCM) is packed in cylinders and the heat transfer fluid (HTF) flows parallel to it (mode 1). The second is suited to tanks where pipes containing the fluid are embedded in the PCM (mode 2). The problem (treated as two-dimensional) is tackled with an enthalpy-based method coupled to the convective heat transfer from the HTF. A series of numerical tests are then undertaken to assess the effects of various PCMs, cylinder radii, pipe radii, total PCM volume in the tank, mass flow rates of fluid, and inlet temperatures of the HTF on the storing time. In addition, optimal geometric design of the store depending on these parameters and PCMs is presented.  相似文献   

15.
A novel double heat pipe type adsorber, which uses compound adsorbent of CaCl2 and expanded graphite to improve the adsorption performance, is designed. The double heat pipes are integrated into the adsorbers in order to solve the problem of the corrosion between seawater and the steel adsorber in ammonia system and improve the heat transfer performance of the adsorber. There are two kinds of heat pipes integrated with the adsorber. One is the split type heat pipe for heating the adsorber in desorption phase, the other one is the two-phase closed thermosyphon heat pipe for cooling the adsorber in adsorption phase. The performance of two-adsorber adsorption chiller integrated with double heat pipes is predicted. The heat transfer performance of the heat pipes can meet the heat demands for adsorption/desorption of the adsorbent when the heating/cooling time is 720 s and mass recovery time is 60 s. When the exhaust gas temperature is 550 °C, the cooling water temperature is 25 °C, the inlet and outlet chilled water is −10 and −15.6 °C, respectively; the simulation results show that the cooling power and COP of this adsorption system are 5.1 kW and 0.38, respectively.  相似文献   

16.
A new microencapsulated phase change material slurry based on microencapsulated Rubitherm RT6 at high concentration (45% w/w) was tested. Some heat storage properties and heat transfer characteristics have been experimentally investigated in order to assess its suitability for the integration into a low temperature heat storage system for solar air conditioning applications. DSC tests were conducted to evaluate the cold storage capacity and phase change temperature range. A phase change interval of approximately 3 °C and a hysteresis behaviour of the enthalpy were identified. An experimental set-up was built in order to quantify the natural convection heat transfer occurring from a vertical helically coiled tube immersed in the phase change material slurry. First, tests were carried out using water in order to obtain natural convection heat transfer correlations. Then a comparison was conducted with the results obtained for the phase change material slurry. It was found that the values of the heat transfer coefficient for the phase change material slurry were higher than for water, under identical temperature conditions inside the phase change interval.  相似文献   

17.
The aim of this work is to study heat transfer in a laboratory scale crater bed, which was set up from a cylindrical acrylic/quartz tube, using sand as the bed particle. The bed employs a downward gas jet from a nozzle which causes the particles to ascend fountain-like into the freebroad, leaving a crater on the bed surface. After reaching a certain height, these particles will descend again to the bed surface and move into the crater, where the cycle or circulation pattern starts again. The study had been separated into three parts. Firstly, the void fraction of the bed fountain zone was studied by direct measurement of the ascending sand weight within the specific volume. Secondly, the convection heat transfer coefficients between the fountain zone and the external surface of the gas inlet tube were determined by measuring the quantity of heat loss from an electrical heater that was wrapped on the outside surface at desired positions of the gas inlet tube. Thirdly, the radiation heat transfer coefficients were evaluated by heat balance of LPG combustion in the crater bed. From experimental results, the void fraction of the fountain zone could be approximated as a dilute bed (>0.98). For convective heat transfer coefficients, the value found experimentally varied from 80–260 W/m2 K depending on the experimental conditions, showing an increase when the gas velocity increases, and a decrease along the height of the gas inlet tube. Radiation heat transfer coefficients, the values of which are (within the experimental temperature range), the same order as the convective mode, increase when the bed temperature is increased and when the bed particle diameter is decreased. Empirical correlations for both bed voidage and heat transfer coefficients are proposed. The combined model, gas and particle convection and the published data on radiation heat transfer, showed good prediction when compared with experimental data.  相似文献   

18.
Jianhua Fan  Simon Furbo 《Solar Energy》2012,86(11):3438-3449
Results of experimental and numerical investigations of thermal behavior in a vertical cylindrical hot water tank due to standby heat loss of the tank are presented. The effect of standby heat loss on temperature distribution in the tank is investigated experimentally on a slim 150 l tank with a height to diameter ratio of 5. A tank with uniform temperatures and with thermal stratification is studied. A detailed computational fluid dynamics (CFD) model of the tank is developed to calculate the natural convection flow in the tank. The distribution of the heat loss coefficient for the different parts of the tank is measured by experiments and used as input to the CFD model. Water temperatures at different levels of the tank are measured and compared to CFD calculated temperatures. The investigations focus on validation of the CFD model and on understanding of the CFD calculations.The results show that the CFD model predicts satisfactorily water temperatures at different levels of the tank during cooling by standby heat loss. It is elucidated how the downward buoyancy driven flow along the tank wall is established by the heat loss from the tank sides and how the natural convection flow is influenced by water temperatures in the tank. When the temperature gradient in the tank is smaller than 2 K/m, there is a downward fluid velocity of 0.003–0.015 m/s. With the presence of thermal stratification the buoyancy driven flow is significantly reduced. The dependence of the velocity magnitude of the downward flow on temperature gradient is not influenced by the tank volume and is only slightly influenced by the tank height to tank diameter ratio. Based on results of the CFD calculations, an equation is determined to calculate the magnitude of the buoyancy driven flow along the tank wall for a given temperature gradient in the tank.  相似文献   

19.
The flow structure inside the inner tank and inside the mantle of a vertical mantle heat exchanger was investigated using a full-scale tank designed to facilitate flow visualisation. The flow structure and velocities in the inner tank and in the mantle were measured using a Particle Image Velocimetry (PIV) system. A Computational Fluid Dynamics (CFD) model of the vertical mantle heat exchanger was also developed for a detailed evaluation of the heat flux at the mantle wall and at the tank wall. The flow structure was evaluated for both high and low temperature incoming flows and for both initially mixed and initially stratified inner tank and mantle. The analysis of the heat transfer showed that the flow in the mantle near the inlet is mixed convection flow and that the heat transfer is dependent on the mantle inlet temperature relative to the core tank temperature at the mantle level.  相似文献   

20.
The characteristics of horizontal mantle heat exchangers are investigated for application in thermosyphon solar water heaters. An experimental model of a horizontal mantle heat exchanger was used to evaluate the flow patterns in the annular passageways and the heat transfer into the inner tank. Flow visualisation was used to investigate the flow structure, and the heat transfer was measured for isothermal inner tank conditions. A numerical model of the flow and heat transfer in the annular passageway was developed and used to evaluate the heat flux distribution over the surface of the inner tank. The numerical results indicate that configurations of mantle heat exchangers used in current solar water heater applications degrade thermal stratification in the inner tank. The effects of inlet flow rate, temperature and connecting port location are quantified.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号