首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Zhundong coalfield is one super-large coalfield recently discovered in China. However, the utilization of Zhundong coal in power plants has caused serious ash-related issues mainly due to its high-sodium feature. The ash deposition problem on convection heat exchanger surfaces is still particularly difficult to resolve and its mechanism has yet to be fully understood. This study deals with the ash deposition and alkali metal migration behaviors on convection heat exchanger surfaces between 400 and 800 °C during combustion of Zhundong coal using a lab-scale drop tube reactor. Experimental results show that the sodium content in ash deposit of Zhundong coals increases obviously as the deposition temperature decreases from 800 to 600 °C, while it is almost unchanged below 600 °C. The contents of iron and calcium in ash deposits exhibit nonmonotonic variations as the deposit probe temperature varies between 400 and 800 °C. Quartz and calcium sulfate are main crystalline phases in ash deposit of Zhundong coals. Calcium is inclined to present as calcite and lime at low deposition temperature, while high temperature facilitates calcium sulfation. Sodium of crystalline phase is found as albite and sodium sulfate at low deposition temperature. Both condensation of gaseous alkali metals and formation of low-melting minerals were responsible for the ash deposition phenomenon on convection heat exchanger surfaces involved in combustion of Zhundong coal. The sodium content in ash deposit decreases considerably with the increasing combustion temperature while the case of iron variation is opposite due to its low-volatility. In addition, the Na content in ash deposits increases obviously with the access air ratio reduced from 1.2 to 1.05, but the local weakly reducing atmosphere leads to less iron within ash deposits. Clarification of sodium migration and evaluation of ash deposition behaviors during combustion of Zhundong coal is helpful for a better exploration of the functional mechanism of ash deposit and then large-scale utilization of high-sodium coals.  相似文献   

2.
《能源学会志》2019,92(6):1743-1756
Ash deposit on the heat exchangers reduces the heat transfer efficiency and even threatens the operation of the equipment. The tool of computational fluid dynamics (CFD) allows for better understanding of the deposit formation and the prediction of the process. This paper presents an improved CFD model to reproduce the growth of ash deposition on a temperature-controlled probe in a pilot-scale furnace with the commercial software Fluent16.0. Dynamic mesh technique is included to investigate the shape variation of the ash deposit during the deposit growth. The model is improved by taking the changing surface temperature of the deposition into consideration. The deposition efficiency, surface temperature and heat flux through the deposit are monitored as the iteration. Three cases are presented to investigate the influence of furnace temperature (1473 K, 1523 K and 1573 K). The results show that the deposition efficiency increases with the increasing surface temperature of the deposit while the mass flow of impaction decreases with the changing flow field. The growth rates of the deposit for the three cases are 0.064, 0.079 and 0.103 mm/min within the simulation time which is consistent with experiment results. The simulated surface temperature shows the same trend of the experimental values. The heat flux in the simulation decreases with a range of 38.2%, 50.3% and 50% for the three cases, respectively. This method of modelling can be used to predict the growth of deposit accurately.  相似文献   

3.
Growth of ash deposits when wood was co-fired with coal was visually investigated in a 300 kW pilot-scale furnace. For comparison, combustion of pure coal was also conducted. A total of 10% and 20% wood were mixed with coal. The thickness and heat flux were obtained. The collected ash deposits and fly ash were characterized by a series of analysis methods to determine the physical and mineral properties. Their relationships were also revealed. Results showed that co-firing of coal with wood dramatically increased the ash deposition propensity. During the coal combustion, shedding of ash deposit occurred and the maximum deposit thickness was 15.33 mm. A deposit thickness of up to 27.02 mm was achieved for 10% wood, and the thickness increased to 34.20 mm for 20% wood. The variation in heat flux with deposit thickness substantially changed when wood was co-fired. A significant change was also observed in the mineral composition of ash deposit with the increase in wood ratio. The proportion of anorthite increased because that of lime in fly ash increased with wood ratio. In addition, the mean diameter of fly ash particles increased as wood ratio increased.  相似文献   

4.
《能源学会志》2020,93(3):1216-1228
Zhundong coalfield is a super-large coal reserve, with high-alkali feature exacerbating ash deposition. Oxy-fuel combustion technology could propel the clean utilization of Zhundong high-alkali coal. While the ash deposition behavior of high-alkali coal under oxy-fuel condition has yet to be sufficiently investigated. The present study compared the differences of ash deposits between oxy-fuel and air combustion, and also examined the effects of oxygen content on ash deposition mechanism, employing a drop-tube furnace equipped with a specially designed sampling probe and some analysis methods, such as X—ray diffraction equipment, simultaneous thermal analyzer, etc. Experimental results indicated that ash deposition was weaker, with fewer contents of sodium chloride, calcium sulphate and less agglomeration ash in oxy-fuel atmosphere compared to the air case with same oxygen content. The content of the ash particle distributed in the range of 0–40 μm was up to 60% under oxy-fuel condition. The first weight loss of ash deposits, around 850 °C, was put down to the decomposition of carbonate and the second one, about 1150 °C, was ascribed to the decomposition of the sulphate minerals in the thermal process. Ash deposition worsened with more large particles (>120 μm), as the oxygen content rose. Sodium chloride content reached 9.7% with 50% oxygen content. The present study not only focuses on the morphology and chemical components, but also probes into the thermal volatility of ash deposits, which benefits the further understanding of the ash deposition mechanism and utilization of Zhundong high-alkali coal during oxy-fuel combustion.  相似文献   

5.
The main objective of this study was to determine ash transformation and deposition characteristic for three types of straw (corn straw, oat straw, and rice straw) combustion at temperatures between 500 and 1000°C. The collected deposits on the sampling probe were characterized with X-ray diffraction and scanning electron microscopy combined with energy dispersive X-ray analysis. The results indicated that the ash forming processes of straw were influenced by fuel composition and temperature. The quantity of corn straw ash collected from deposition probe was noticeably lower than that of oat straw and rice straw due to different contents of K, S, and Si in fuels. The deposition amounts of corn straw and oat straw followed a linear pattern at temperatures below 800°C, while rice straw followed a nonlinear pattern as a function of temperature. Corn straw was an ideal fuel compared to oat straw and rice straw from the points of deposition amounts and appearance. It also can be found that silicon, calcium, potassium, and sulfur were key points in the forming process of ash deposits.  相似文献   

6.
《能源学会志》2020,93(6):2399-2408
Phosphorus effect on ash fouling deposition produced during combustion process of sewage sludge solid fuel is a very important factor. Previous studies have only focused on decrease of the ash melting temperature and increase of slagging and sintering by phosphorus content. Therefore, research regarding combustion fouling formation and its effect on temperature reduction of deposit surface by phosphorus content is insufficient. Ash fouling is an important factor, because ash in the combustion boiler process deposits on the surface of heat exchanger and interferes with heat exchange efficiency. In particular, temperature reduction of heat exchanger surface via fouling should be considered together with fouling deposition, because this is related to the heat exchanger efficiency. Synthetic ash, phosphorus vaporization, and drop tube furnace experiments were performed to investigate effect of phosphorus on ash fouling formation and temperature reduction of deposit surface under combustion condition. Phosphorus was highly reactive and reacted with ash minerals to produce mineral phosphate, which promoted ash fouling deposition during the combustion experiments. In contrast, the occurrence of sintering on deposited fouling resulted in formation of a large hollow structure, which alleviated the temperature reduction on the deposit surface. Phosphorus content had a substantial correlation with fouling deposition behavior and influenced reduction in the surface temperature of the heat exchanger, because it led to generating low temperature mineral phases.  相似文献   

7.
A batch stirred tank device has been developed for measuring fouling from oil samples. The unit consists of a baffled tank equipped with a centrally mounted long blade stirrer, and an electrically heated rod located at 40% of the radius of the tank. Heat transfer from the rod was first characterized. The velocity field was measured, from which the approach velocity to the probe was determined, which allowed the wall shear on the heating probe to be calculated from a literature equation. Fouling of a heavy oil fraction was studied in 1- to 2-day experiments with bulk oil temperatures typically at 320°C, initial probe surface temperatures to 536°C, and stirrer speeds of 100–900 rpm. Micrometer-sized iron oxide particles were added to the oil, such that fouling was due to a combination of particle deposition and coke formation. Deposition rates were measured thermally from the change in heat transfer coefficient when fouling was relatively heavy, and by thickness and mass accumulation when fouling was light. Effects of oil type, film temperature, stirrer rotation speed (or probe wall shear stress), and concentration of suspended particles on deposition rate and deposit composition are presented.  相似文献   

8.
To facilitate the large-scale utilization of high-alkali and -alkaline earth metals (AAEMs) coals in power generation, the ash deposition behaviors of a typical Zhundong coal in oxy-fuel combustion were experimentally investigated using a drop tube furnace. A wall-temperature-controlled ash deposition probe by which the bulk gas temperature could be measured simultaneously was designed and employed in the experiments. The deposition tendencies, ash morphologies, chemical compositions of deposited ash particles were studied respectively under various oxygen concentrations, bulk gas temperatures, probe surface temperatures and probe exposure times. The experimental results revealed that the oxygen concentration had a significant influence on the deposition behavior during oxy-fuel combustion of high-alkali coal. Compared with air case, more fine ash particles were generated during the combustion of Zhundong coal in 21% O2/79% CO2 atmosphere but the deposition tendency was weaker. However, a higher oxygen concentration could aggravate the tendency of ash deposition. The high contents of iron (Fe), calcium (Ca), sulfur (S), and sodium (Na) in Zhundong coal could result in the generations of low-melting point compounds. Calcium in flue gas existed as CaO and was captured prior to SO3 by the probe surface during the ash deposition process. At the initial 30 min of the ash deposition process, the dark spherical fine ash particles rich in Fe, Na, oxygen (O), and S were largely produced, while in the range of 60–90 min the light spherical fine ash particles with high contents of Ca, barium (Ba), O, and S were generated on the other hand. The deposition mechanisms at different stages were different and the melted CaO (BaO)/CaSO4 (BaSO4) would give rise to a fast growth rate of ash deposit.  相似文献   

9.
The objective of this paper is to review the present state-of-the-art knowledge on heat transfer to the surface of and inside ash deposits formed in solid fuel-fired utility boilers, and-based on the review-to propose models for calculation of heat transfer, e.g. in deposition models. Heat transfer will control the surface temperature of the deposit, thereby influencing the physical conditions at the deposit surface, e.g. if the surface is molten. The deposit surface conditions will affect the deposit build-up rate as well as the removal/shedding of deposits: molten deposit may lead to a more efficient particle capturing, but may also flow down the heat transfer surfaces.

The heat transfer parameters of prime interest are the convective heat transfer coefficient h, the effective thermal conductivity of the deposit keff, and the surface emissivity ε of the deposit. The convective heat transfer coefficient is a function of flow characteristics, and can be calculated using different correlation equations, while the other two parameters depend on the deposit properties, and can be calculated using different structure-based models.

The thermal conductivity of porous ash deposits can be modelled using different models for packed beds. These models can be divided into two major groups, depending on the way they treat the radiation heat transfer, i.e. the unit cell models and the pseudo homogeneous models. Which model will be suitable for a particular application depends primarily on the deposit structure, i.e. whether deposit is particulate, partly sintered or completely fused.

Simple calculations of heat transfer resistances for deposits have been performed, showing that major resistances are in the heat transfer to the deposit (by convection), and the heat transfer through the deposit (by conduction). Very few experimental data on the thermal conductivity of ash deposits, especially at high temperatures where radiation is important, are found in the literature. Although the structure of the deposit is essential for its thermal conductivity, most of the measurements were done on crushed samples. The results obtained using different models were compared with the experimental data published in Rezaei et al. [Rezaei, Gupta, Bryant, Hart, Liu, Bailey, et al. Thermal conductivity of coal ash and slags and models used. Fuel 2000;79:1697–1710.], measured on crushed coal ash samples. Although errors of the predictions were very high in most cases, two models were proposed as suitable for heat conductivity calculations, i.e. the Yagi and Kunii model for particulate deposits, and the Hadley model for sintered and fused deposits.

This literature study showed the need for a wide range of experimental data, which would help in evaluating and improving the existing thermal conductivity models. Also, it is necessary to formulate a more accurate model for the thermal conductivity of solid mixtures, in which potentially important sources of errors can be identified.  相似文献   


10.
Co-firing peat with lignite for power generation was studied at pilot-scale, focusing on the issue of ash deposition, the major concern for this application. A specially designed probe was used to measure the rate of ash deposition under similar conditions of power plant boiler operation. Fraction of peat in the feed was varied up to 100%. It was observed that whereas the ash deposition decreased in general with increasing fraction of low-ash peat, the decrease was significantly less than expected from ash content of the feed, suggesting higher deposition tendency of ash from the peat. Chlorine content in the deposited ash showed a maximum at a certain blend ratio of the feed, which could not be explained by fuel chlorine content alone. The ash and chlorine deposition behaviour has been analyzed and simulated by mathematical models where interactions between fuel chlorine, alkali and ash particles are parameterized. The models ought to be useful for control and optimization purposes, and also be useful for co-firing other fuel blends.  相似文献   

11.
The reserves of Zhundong (ZD) coal in China are huge. However, the high content of Na and Ca induces serious slagging and fouling problems. In this study, the ZD coal was burned in a DTF (drop tube furnace), and the ashes collected at different gas temperature with non-cooling probe were analyzed to obtain the ash particle properties and their combination mode. The results showed that Na, Ca and Fe are the main elements leading to slagging when the gas temperature is about 1000 °C during ZD coal combustion, but their mechanisms are quite different. Some sodium silicates and aluminosilicates and calcium sulfate keep molten state in the ashes collected at 1000 °C. These molten ash particles may impact and adhere on the bare tube surface, and then solidified quickly. With the growth of slag thickness, the depositing surface temperature is increased. The molten ash particles might form a layer of molten film, which could capture the other high fusion temperature particles. The Fe2O3 sphere were captured by the formed molten slag and then they blended together to form a new molten slag with lower melting temperature.  相似文献   

12.
《能源学会志》2020,93(2):766-773
Ash deposition and condensation of acid vapors under deep-cooling of exhaust gas in a 1000 MW ultra-supercritical power plant were investigated. X-ray diffraction, X-ray fluorescence and laser particle size analyzers were employed to characterize the components, elements and particle size distribution of deposits at different metal wall temperatures. The results show that the deposits formed at the metal wall temperatures of 40 °C–60 °C were much thicker than the deposits at 70 °C–90 °C from the perspectives of the morphology and thickness. Fluorides and chlorides were observed in deposits formed at the metal wall temperatures of 40 °C–60 °C. Thin deposits were composed of Al-Si oxides and simple sulfates when the metal wall temperatures were 70 °C–90 °C. The dew-point temperatures of water, HCl and HF vapors were around 40 °C, 60 °C, and 60 °C, respectively. Basic ferric, aluminum and calcium sulfates, which were acted as traps to absorb the condensate and fly ash. Hydration played an important role in the growth of deposits formed at the metal wall temperature of 40 °C–60 °C.  相似文献   

13.
Ash deposits formed during fuel thermal conversion and located on furnace walls and on convective pass tubes, may seriously inhibit the transfer of heat to the working fluid and hence reduce the overall process efficiency. Combustion of biomass causes formation of large quantities of troublesome ash deposits which contain significant concentrations of alkali, and earth-alkali metals. The specific composition of biomass deposits give different characteristics as compared to coal ash deposits, i.e. different physical significance of the deposition mechanisms, lower melting temperatures, etc. Low melting temperatures make straw ashes especially troublesome, since their stickiness is higher at lower temperatures, compared to coal ashes. Increased stickiness will eventually lead to a higher collection efficiency of incoming ash particles, meaning that the deposit may grow even faster.  相似文献   

14.
灰特性对燃煤炉内灰沉积行为的影响   总被引:1,自引:0,他引:1  
为了解灰特性对燃煤炉内灰沉积行为的影响,以黄陵、神木和新汶3种具有不同灰特性的燃煤为研究对象,通过自制灰污热流探针和SiC结渣棒,分别模拟了正常情况及存在烟气冲墙贴壁情况下的锅炉受热面灰沉积行为,比较了灰渣外形、化学成分、熔融温度和热流变化率等特性参数,并通过对灰渣样晶的X-射线衍射、扫描电镜及能谱分析,获得了3种燃煤灰沉积物的元素组成、矿物相及微观结构和形貌特征.结果表明,由于Ca、Fe的协同作用,黄陵煤的灰沉积特性强于神木和新汶煤,Ca、Fe是引起这类煤灰沉积的主要矿物元素,硬石膏、钙长石和赤铁矿是灰沉积物中的主要矿物相;当存在烟气冲墙贴壁时,灰沉积物中Fe含量很高.使熔融温度大大降低,从而加剧受热面的灰沉积过程,在工程实际中应采取相应措施,避免出现这种情况.  相似文献   

15.
Based on the low hydration heat and temperature rise requirements of cement slurry used in natural gas hydrate layer, two novel microencapsulated phase change materials (MPCM‐1 and MPCM‐2) with different melting point were designed and synthesized; then, the heat evolution of cement slurry was controlled by MPCM‐1 and MPCM‐2 through physical means; the decomposition of hydrates was avoided. Before synthesizing MPCM‐1 and MPCM‐2, the micromorphology, particle size, and distribution of paraffin wax emulsion were studied. Then, the MPCM‐1 and MPCM‐2 containing paraffin wax with urea formaldehyde resin shell was synthesized by in situ polymerization, and the chemical structure and performances were investigated. The melting point of MPCM‐1 and MPCM‐1 is 23.09°C and 35.85°C; the phase change enthalpy is 97.49 and 85.69 J/g. The MPCM‐1 and MPCM‐2 were added into cement slurry, and the controlling effects on heat evolution were studied. As a result, it was found that the hydration heat and temperature rise of cement slurry were successfully reduced by using MCPM‐1 and MPCM‐2. Simultaneously, the investigations of fly ash and slag cement slurry were accomplished. Moreover, the fly ash and slag cement slurry containing microencapsulated phase change materials was prepared. It was shown that the 24 and 48‐hour hydration heat were reduced by 1.10 × 105 and 10.5 × 105 J, respectively.  相似文献   

16.
The objective of this study was to enhance the suitability of Lu’an coal for gasification in large entrained-flow gasifiers currently used by the Lu’an Group Mining Company in its 1.8 million ton per annum coal-based oil synthesis demonstration project. The effect of coal blending and flux addition on the ash fusion temperature (AFT) and gasification reactivity was investigated. CaO, Fe2O3, and MgO decreased the AFT of Lu’an coal by 150°C, 73°C, and 68°C, respectively, by a flux addition of up to 7%. Within the range of the experimental investigation, the AFT of Lu’an coal decreased by 3°C for each 1% of Shenmu coal addition. The gradual reduction of mullite and the formation of fayalite and hessonite in blended coal ash decreased the AFT. The addition of a fluxing agent significantly increased the reaction activity of the char, with Fe2O3 exhibiting the largest catalytic effect on char gasification. Blending with Shenmu char significantly increased the gasification reactivity. The random pore model best describes the gasification process of Lu’an char, and a kinetic equation for the process was developed on the basis of this model.  相似文献   

17.
Improving the performance of heat transfer fluids is altogether significant. The best approach for improving the thermal conductivity is the addition of nanoparticles to the base fluid. In the present study, specific heat, dynamic viscosity, and thermal conductivity of water-based Indian coal fly ash stable nanofluid for 0.1% to 0.5% volume concentration in the temperature range of 30 to 60°C has been investigated. To evaluate an average particle diameter of 11.5 nm, the fly ash nanoparticles were characterized with scanning electron microscopy and dynamic light scattering. Using zeta potential, the stability of nanofluid in the presence of surfactant Triton X-100 was tested. Thermal conductivity and viscosity of fly ash nanofluid increased, while specific heat decreased as volume concentration increased. The effect of temperature on the fly ash nanofluid was directly proportional to its thermal conductivity and specific heat and inversely proportional to viscosity.  相似文献   

18.
Olive kernel can play an important role as a fuel for heat and power production in the island of Crete, substituting a large part of conventional fuels. However, combustion of this biofuel may create operational and environmental problems related to its inorganic constituents. Thus, the thermal behaviour of the ashes in terms of slagging and fouling propensities and their environmental impact upon disposal to local soils were investigated, through lab-scale fixed/fluidized bed combustion tests. Bottom and fly ashes were characterized by mineralogical, chemical, morphological and fusibility analyses, as well as standard leaching tests and the results under the different combustion configurations were compared.Olive kernel ash was rich in Ca, Si and P minerals and contained substantial amounts of alkali. Under the conditions of the combustion tests, no signs of bed agglomeration or ash deposition were noticed; however, when combustion takes place in a fixed bed this should be operated below 1100 °C, to avoid ash melting and the companion problems. Trace elements showed little preference for the fly ash. The elements Cr, Cu, Ni and Mn were enriched in fixed bed ash. Toxic metal ions were released in low quantities in the soil, below the legislative limit values, with the exception of Cr. The low leachability of trace elements from the fixed bed ash was attributed to the alkaline nature of the ashes, the mineralogy, the chemistry and the buffering capacity of the soil. The high extraction rates of Mn, Zn and Cr, from the fly ash, suggest that these elements were associated with carbonates, sulfides, sulfates or organic matter.  相似文献   

19.
This paper presents experimental measurements of natural convection heat transfer and frost deposition over a horizontal fin‐tube. Measurements are made for a fin‐tube of diameter 25.4 mm, fin thickness 0.4 mm, fin center diameter 56 mm, and fin spacing 2 mm. For measurements the ambient air temperature and relative humidity are changed from 18 to 25°C and from 35% to 55%, respectively. The tube surface temperature is changed from –5 to –9 °C, and super cooling degrees of 7.5 to 24.5 °C. Results include a visualization of frost deposition growth, frost accumulation rate, and heat transfer rate with respect to time for each experiment. The results show that cold air starts from the upper point and moves downward and frost deposition starts on the fin tips, and grows with time both radially and angularly. Frost growth thickness changes significantly from top to bottom, where the boundary layers of both thermal and concentration increase at the bottom of the fin‐tube section without considerable separation. Frost growth only takes place on the fin's tip and it blocks the heat and mass transfer from the fin surfaces and the tube base which reduces convection and frost growth considerably. © 2011 Wiley Periodicals, Inc. Heat Trans Asian Res; Published online in Wiley Online Library ( wileyonlinelibrary.com/journal/htj ). DOI 10.1002/htj.20397  相似文献   

20.
To reduce anthropogenic CO2 emissions from power plants, biomass is an immediate alternative fuel which has similar properties as coal. In this regard, the present study discusses about pelletized wood (PW) co-firing with high ash Indian coal by conducting co-milling and co-firing trials in a 1000 kg/hr of pilot scale test facility. Indian coals are typically high ash content and low calorific value fuels, therefore, its interaction with coal during combustion and ash deposition have studied in detail. Based on co-milling trails of PW and coal, it was observed that as PW proportion in coal increases, the quantity of particles of size below 50 μm and as well above 500 μm were increased. From co-firing studies, it was observed that higher volatile content in PW helping in stabilizing flames while co-firing. At lower proportions, up to 10% weight PW co-firing with coal, the flame temperature and heat flux values are very close to base test of 100% coal firing. However, beyond 10% by weight of PW co-firing with coal, the flame temperature and heat flux values were increased significantly from 100% coal tests. This is because of higher calorific value of PW than coal. The CO emission was decreased with increase in PW proportion in coal but at 30% of PW in coal, CO emission was increased suddenly. However, NO and SO2 concentrations were decreased up to 8% and 16% respectively with increase in PW proportion in coal due to lower fuel nitrogen and sulphur content in PW than coal. Analytical analysis of slagging indices suggest that the slagging potential for PW co-firing with coal is increasing as the PW proportion in coal increases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号