首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
A solar thermal cooling and heating system at Carnegie Mellon University was studied through its design, installation, modeling, and evaluation to deal with the question of how solar energy might most effectively be used in supplying energy for the operation of a building. This solar cooling and heating system incorporates 52 m2 of linear parabolic trough solar collectors; a 16 kW double effect, water-lithium bromide (LiBr) absorption chiller, and a heat recovery heat exchanger with their circulation pumps and control valves. It generates chilled and heated water, dependent on the season, for space cooling and heating. This system is the smallest high temperature solar cooling system in the world. Till now, only this system of the kind has been successfully operated for more than one year. Performance of the system has been tested and the measured data were used to verify system performance models developed in the TRaNsient SYstem Simulation program (TRNSYS). On the basis of the installed solar system, base case performance models were programmed; and then they were modified and extended to investigate measures for improving system performance. The measures included changes in the area and orientation of the solar collectors, the inclusion of thermal storage in the system, changes in the pipe diameter and length, and various system operational control strategies. It was found that this solar thermal system could potentially supply 39% of cooling and 20% of heating energy for this building space in Pittsburgh, PA, if it included a properly sized storage tank and short, low diameter connecting pipes. Guidelines for the design and operation of an efficient and effective solar cooling and heating system for a given building space have been provided.  相似文献   

2.
An indirect forced circulation solar water heating systems using a flat-plate collector is modeled for domestic hot water requirements of a single-family residential unit in Montreal, Canada. All necessary design parameters are studied and the optimum values are determined using TRNSYS simulation program. The solar fraction of the entire system is used as the optimization parameter. Design parameters of both the system and the collector were optimized that include collector area, fluid type, collector mass flow rate, storage tank volume and height, heat exchanger effectiveness, size and length of connecting pipes, absorber plate material and thickness, number and size of the riser tubes, tube spacing, and the collector’s aspect ratio. The results show that by utilizing solar energy, the designed system could provide 83-97% and 30-62% of the hot water demands in summer and winter, respectively. It is also determined that even a locally made non-selective-coated collector can supply about 54% of the annual water heating energy requirement by solar energy.  相似文献   

3.
The European Centre for Public Law in Legraina near Athens in Greece is heated and cooled by a combined solar and geothermal system. The main components of the system are a saline groundwater supplying well, water storage tank for 6 h autonomy, inverter for regulating geothermal flow, heat exchanger, two electrical water source heat pumps placed in cascade, fan coils, air handling units, as well as solar air collectors for air preheating in winter. In addition, hot water is supplied to the building hostel by solar water heaters. Monitoring of the energy system during heating showed excellent energy efficiency and performance.  相似文献   

4.
为解决因太阳能的不稳定性等因素导致的太阳能蓄热水箱储热/放热能力的不保证性问题,提出采用中低温有机相变材料58号石蜡作为相变蓄热材料的圆台式太阳能相变蓄热水箱。采用计算流体力学(computational fluid dynamics,CFD)数值模拟的计算方法,在保证总蓄水体积(以100 L为例)不变的情况下,对水箱中不同内胆倾斜角度分别为75°、80°、85°、90°、95°、100°、105°的放热过程进行数值模拟,综合对比和分析水箱放热性能模拟结果,得到当倾斜角度为105°时的相变蓄热构件放热性能最佳,可为太阳能相变蓄热水箱的结构优化设计提供理论依据。  相似文献   

5.
A computational simulation model for determining the thermal performance of large-scale community solar heating systems with interseasonal heat storage is described. Special attention has been paid to the mathematical formulation of the storage unit. It comprises an uninsulated stratified hot water tank excavated in rock. The storage capacity of the surrounding ground may also be utilized by vertical heat exchanger pipes. Comparisons of theoretical system performance predictions with recent experimental measurements from a full-scale prototype installation are presented and found to be in reasonable agreement. The simulation program is also used to evaluate the thermal performance of various district solar heating system configurations for northern cold climatic conditions (60°N).  相似文献   

6.
The thermal advantages by utilizing discharge from different levels in solar storage tanks are investigated, both for a small SDHW system and for a solar combisystem.The investigations showed that it is possible to increase the thermal performance of both types of systems by using two draw-off levels from the solar tanks instead of one draw-off level at a fixed position.The best position of the second draw-off level is in the middle or just above the middle of the tank. For the investigated small SDHW system with a realistic draw off hot water temperature of 40 °C and 45 °C and an auxiliary volume temperature of 50.5 °C the increase of the thermal performance by the second draw-off level is about 6%.For the investigated solar combisystem the increase in thermal performance by using one extra draw-off level, either for the domestic hot water heat exchanger or for the heating system, is about 3%, while an improvement of about 5% is possible by using a second draw-off level both for the domestic hot water heat exchanger and for the heating system.  相似文献   

7.
The performance of a heat-pipe solar collector was investigated experimentally using refrigerants R11 as the working fluid. The unit is fabricated locally and its performance is evaluated under Beirut Solar conditions. The heat transfer from the heat pipes to the hot-water storage tank took place through a circular end condenser section of the heat-pipe integrated within the collector frame. Tests of single heat pipes showed that the thermal performance of the heat pipe were dependent on its tilt angle, condenser section length and configuration, and type of internal wick used. A circular condenser end of the heat-pipe performed better than a straight condenser due to increased surface area for heat transfer. The R11-charged solar collector with integrated condenser for secondary cooling of water had an efficiency in early operation hours that reached values higher than 60% for the forced circulation mode. The instantaneous system efficiencies varied from 60 to 20%, which are in the range of conventional water solar collectors. System response was fast and sensitive to the incident solar radiation. The thermosyphonic mode of the system operation generated build up of stored energy in the condenser, resulting in oscillating-type flow thus reducing system efficiency below values obtained with forced circulation. © 1998 John Wiley & Sons, Ltd.  相似文献   

8.
This study discusses the results of an experimental analysis of an active space heating system. The solar installation mainly includes two flat-plate solar collectors, a liquid-to-liquid heat exchanger, a storage tank, a liquid-to-air heat exchanger, two circulation pumps, an expansion tank, and several valves. By the aid of an instrumentation system, mainly consisting of two pyranometers, 20 gauge copper-Constantan thermocouples, a digital multimeter, and a recorder, total solar radiation incident on the collectors, temperature fluctuations of the working fluids at the intersections of the major system components, and the room space and ambient temperatures were recorded throughout the heating period. The system was designed to operate in direct and indirect modes. Several conclusions are drawn to improve the system overall efficiency, and some inconveniences observed in the operation are discussed.  相似文献   

9.
Thermal stratification in solar energy storage tanks plays an important role in enhancing the performance of solar domestic hot water systems. The mixing that occurs when hot fluid from the solar collector enters the top of the tank is detrimental to the stratification. Mathematical models that are used for system analysis must therefore be able to capture the effects of this inlet jet mixing in order to accurately predict system performance. This paper presents a computational study of the heat transfer and fluid flow in a thermal storage tank of a solar domestic hot water system with a vertical inlet under negative buoyant plume conditions. The effects of parameters such as the fluid inlet velocity and temperature as well as inlet pipe diameter on the thermal mixing were considered. The work culminated in the development of a one-dimensional empirical model capable of predicting the transient axial temperature distribution inside the thermal storage tank. Predictions from the new model were in good agreement with both experimental data and detailed computational fluid dynamics predictions.  相似文献   

10.
This research target was to improve the thermal efficiency of a solar water heating system (SWHS) coupled with a built-in solar water pump. The designed system consists of 1.58-m2 flat plate solar collectors, an overhead tank placed at the top level, the larger water storage tank without a heat exchanger at the lower level, and a one-way valve for water circulation control. The discharge heads of 1 and 2 m were tested. The pump could operate at the collector temperature of about 70–90 °C and vapor gage pressure of 10–18 kPa. It was found that water circulation within the SWHS ranged between 15 and 65 l/d depending upon solar intensity and discharge head. Moreover, the max water temperature in the storage tank is around 59 °C. The max daily pump efficiency is about 0.0017%. The SWHS could have max daily thermal efficiency of about 21%. It is concluded that the thermal efficiency was successfully improved, except for the pump one. The new SWHS with 1 m discharge head or lower is suitable for residential use. It adds less weight to a building roof and saves electrical energy for a circulation pump. It has lower cost compared to a domestic SWHS.  相似文献   

11.
Metal hydrides can store hydrogen at high volumetric efficiencies. As the process of charging hydrogen into a metal powder to form its hydride is exothermic, the heat released must be removed quickly to maintain a rapid charging rate. An effective heat removal method is to incorporate a heat exchanger such as a heat pipe within the metal hydride bed. In this paper, we describe a two-dimensional numerical study to predict the transient heat and mass transfer in a cylindrical metal hydride tank embedded with one or more heat pipes. Results from a parametric study of hydrogen storage efficiency are presented as a function of storage tank size, water jacket temperature and its convective heat transfer coefficient, and heat pipe radius and its convective heat transfer coefficient. The effect of enhancing the thermal conductivity of the metal hydride by adding aluminum foam is also investigated. The study reveals that the cooling water jacket temperature and the heat pipe's heat transfer coefficient are most influential in determining the heat removal rate. The addition of aluminum foam reduces the filling time as expected. For larger tanks, more than one heat pipe is necessary for rapid charging. It was found that using more heat pipes of smaller radii is better than using fewer heat pipes with larger radii. The optimal distribution of multiple heat pipes was also determined and it is shown that their relative position within the tank scales with the tank size.  相似文献   

12.
《Applied Thermal Engineering》2007,27(2-3):430-441
This paper presents the results of experimental measurement and numerical simulation of the performance of a heat pump system designed to make use of rainwater and ground as heat sources/sinks. The system was tested under laboratory conditions. A refrigerant was circulated through a closed loop heat exchanger to transfer heat between the heat pump and rainwater in a storage tank and another heat exchanger made of solid bars or heat pipes to transfer heat between the stored rainwater and surrounding soil. Physical and thermal properties of soil such as water content, density, specific heat, thermal diffusivity and thermal conductivity were determined. Numerical simulations were also carried out for a rainwater storage tank installed under ground for domestic application of the heat pump with different operating modes, heating loads and the sizes and types of heat exchanger.  相似文献   

13.
One of the alternatives to reduce the consumption of electricity for heating water is by popularizing the use of solar energy. This work contributes with studies on a Low-Cost Solar Heater (LCSH), a new concept of solar water heater made entirely of polymeric materials, which requires a relatively low investment and is user-assembled. The solar collector, which absorbs solar energy and transfers it to water in the form of heat, is composed of uncovered flat panels of rigid PVC. The storage tank that holds the water heated during the day is made of polyethylene coated with polystyrene. The results of the LCSH were compared with those of a conventional solar heater composed of a glass-covered copper collector and a stainless steel storage tank. The efficiency of the systems was evaluated by measuring the incident solar radiation and water temperature with the systems operating naturally (thermosiphon). The heat loss in the hot water storage tanks was measured to estimate the thermal performance of the solar heaters. Considering that the target temperature for the heated water is slightly above the ambient temperature, the results indicated that the LCSH showed a satisfactory global heat transfer coefficient for storage tanks and that it attained an excellent thermal performance, although it is not as efficient as the conventional heater.  相似文献   

14.
A number of solar domestic hot water systems and many combined space and water heating systems have heat exchangers placed directly in the storage fluid to charge and/or discharge the tank. Operation of the heat exchanger produces a buoyancy-driven flow within the storage fluid. With a view toward controlling the flow field to increase heat transfer, a cylindrical baffle is inserted in a 350 l cylindrical storage tank. The baffle creates a 40 mm annular gap adjacent to the tank wall. A 10 m-long, 0.3 m2 copper coil heat exchanger is placed in the gap. The effects of the baffle on the transient heat transfer, delivered water temperature, heat exchanger effectiveness, and temperature distribution within the storage fluid are presented during discharge of initially thermally stratified and fully mixed storage tanks. The baffle increases the storage side convective heat transfer to the heat exchanger by 20%. This increase is attributed to higher storage fluid velocities across the heat exchanger.  相似文献   

15.
The performance of two R-11-charged integrated solar water heater collectors was investigated experimentally for forced and natural circulation water flows. The heat transfer from the refrigerant loop to the hot water storage tank took place through a condenser of novel design integrated within the collector frame. The effect of the condenser inclination on the system efficiency was remarkable for natural circulation water flow but had no significant effect for forced circulation flow. The difference in thermal response between the refrigerant and water loops caused buildup of stored energy in the condenser. This energy affected the buoyancy forces and generated flow pulsation that caused a harmonic-like variation of the system efficiency. This effect vanished with forced water circulation flow. The system efficiency varied between 20 and 50% depending on the solar insolation.  相似文献   

16.
The thermal performance of thermosyphon flat-plate solar water heater with a mantle heat exchanger was investigated to show its applicability in China. The effect on the performance of the collector of using a heat exchanger between the collector and the tank was analyzed. A “heat exchanger penalty factor” for the system was determined and energy balance equation in the system was presented. Outdoor tests of thermal performance of the thermosyphon flat-plate solar water heater with a mantle heat exchanger were taken in Kunming, China. Experimental results show that mean daily efficiency of the thermosyphon flat plate solar water heater with a mantle heat exchanger with 10 mm gap can reach up to 50%, which is lower than that of a thermosyphon flat-plate solar water heater without heat exchanger, but higher than that of a all-glass evacuated tubular solar water heater.  相似文献   

17.
Gerard F. Jones  Noam Lior 《Energy》1979,4(4):593-621
A compact and time-effective insulation design procedure for solar heating system piping and water-filled thermal storage tanks was developed. Recognizing the particular sensitivity of solar systems to cost, the economic aspect of the problem was treated by a comprehensive present-value life-cycle cost analysis. In the development of the method, a numerical sensitivity analysis was performed to determine the relative effects of all relevant independent variables (within their pertinent ranges) on piping and tank heat transfer coefficient values. For the acceptable error limits of ± 14% for pipes and ± 19% for tanks, it was found that one may assume that only the nominal pipe diameter (or tank diameter), the thermal conductivity of the insulation, and the insulation's thickness have an effect on the overall heat transfer coefficient. Based on this result, design graphs and tables are presented which can be used to determine the optimal insulation thickness and type, total annual heat losses, present-value annual costs of insulation and lost heat, and overall insulation R-values. The use of the method is illustrated by calculating all the above quantities for all piping and storage tanks for the University of Pennsylvania SolaRow House. The present method provided insulation thicknesses slightly greater than those obtained by the ETI technique.A major conclusion of the study is that the cost of insulation in solar systems is not insignificant (e.g., ~15% in SolaRow), and that heat losses through insulation could amount to an important percentage of the useful solar energy collected (e.g., 24% in SolaRow). This re-emphasizes the need for a careful design of insulation in solar systems.  相似文献   

18.
In this study, the performance of a reversible ground‐source heat pump coupled to a municipality water reticulation system, is compared experimentally and with simulations to a conventional air‐source heat pump for space cooling and heating. A typical municipality water reticulation system comprises hundreds of kilometres of pipes designed in loops that will ensure adequate circulation of water. This results in a substantial heat exchanger with great potential. Indirect heat transfer occurs between the refrigerant and ground via the municipality water reticulation system that acts as the water‐to‐ground heat exchanger. The experimental and simulated comparisons of the ground‐source system to the air‐source system are conducted in both the cooling and the heating cycles. Climatalogical statistics are used to calculate the capacities and coefficients of performance of the ground‐source and air‐source heat pumps. Results obtained from measurements and simulations indicate that the utilization of municipality water reticulation systems as a heat source/sink is a viable method of optimizing energy usage in the air conditioning industry, especially when used in the heating mode. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

19.
Finding the global optimal combination of the main components for a solar thermal energy system is an important topic in utilising solar radiation in a cost-effective way. However, selecting an optimal solar thermal system in a cold climate condition is a challenging task due to the dependency on the heat demand and the limited availability of solar radiation. This research presents several sets of optimum combinations of a solar thermal collector and a hot water storage tank regarding energy efficiency and the life cycle cost. Since domestic hot water consumption forms the significant part of the heat demand in new energy efficient apartment buildings, the applied consumption information were extracted precisely according to measured data. The solar thermal system with cost-optimal component sizes was able to save district heat energy consumption up 24% to 34% and made 4 €/m^2 to 23 €/m^2 in financial profit.  相似文献   

20.
The present paper deals with an analysis of a forced circulation closed loop solar water heating system; withdrawal of hot water of constant flow rate from a storage tank through a heat exchanger is considered. The effect of flow rate and heat exchanger length on the performance has also been discussed for a typical set of parameters and for a typical cold day in Delhi (26 January 1980).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号