首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
Biorefineries: Current activities and future developments   总被引:1,自引:0,他引:1  
This paper reviews the current refuel valorization facilities as well as the future importance of biorefineries. A biorefinery is a facility that integrates biomass conversion processes and equipment to produce fuels, power, and chemicals from biomass. Biorefineries combine the necessary technologies of the biorenewable raw materials with those of chemical intermediates and final products. Char production by pyrolysis, bio-oil production by pyrolysis, gaseous fuels from biomass, Fischer–Tropsch liquids from biomass, hydrothermal liquefaction of biomass, supercritical liquefaction, and biochemical processes of biomass are studied and concluded in this review. Upgraded bio-oil from biomass pyrolysis can be used in vehicle engines as fuel.  相似文献   

2.
《能源学会志》2020,93(1):235-271
The use of renewable carbon sources as a substitute for fossil resources is an extensively essential and fascinating research area for addressing the current issues related to climate and future fuel requirements. The utilization of lignocellulosic biomasses as a source for renewable fuel/chemicals/mesoporous biochar derivative is gaining considerable attention due to the neutral carbon cycle. The cellulose and hemicellulose are highly utilized components of biomass, and on the other hand, lignin is a plentiful, under-utilized component of the lignocellulosic biomass in 2G ethanol and paper industry. Significant researchers have contributed towards lignin valorization, with a central goal of the production and upgradation of phenolic, unstable, acidic and oxygen-containing bio-oil to valuable chemicals or fuel grade hydrocarbons. This review is aimed to present the lignin valorization potential from pretreatment of biomass as an initial step to the final process, i.e., lignin bio-oil upgradation with mechanistic pathways. The review offers the source, structure, composition of various lignocellulosic biomasses, followed by a discussion of various pre-treatment techniques for biomass depolymerization. Different thermochemical approaches for bio-oil production from dry and wet biomasses are highlighted with emphasis on pyrolysis and liquefaction. The physical, chemical properties of lignin bio-oil and different upgradation methods for bio-oil as well as its model compounds are thoroughly discussed. It also addresses the related activity, selectivity, stability of numerous catalysts with reaction pathways and kinetics in a broad manner. The challenges and future research opportunities of lignin valorization are discussed in an attempt to place lignin as a feedstock for the generation of valuable chemical and fuel grade hydrocarbons.  相似文献   

3.
Bio-oil production and upgrading research: A review   总被引:1,自引:0,他引:1  
Biomass can be utilized to produce bio-oil, a promising alternative energy source for the limited crude oil. There are mainly two processes involved in the conversion of biomass to bio-oil: flash pyrolysis and hydrothermal liquefaction. The cost of bio-oil production from biomass is relatively high based on current technologies, and the main challenges are the low yield and poor bio-oil quality. Considerable research efforts have been made to improve the bio-oil production from biomass. Scientific and technical developments towards improving bio-oil yield and quality to date are reviewed, with an emphasis on bio-oil upgrading research. Furthermore, the article covers some major issues that associated with bio-oil from biomass, which includes bio-oil basics (e.g., characteristics, chemistry), application, environmental and economic assessment. It also points out barriers to achieving improvements in the future.  相似文献   

4.
利用微藻热化学液化制备生物油的研究进展   总被引:1,自引:0,他引:1  
微藻是制备生物质液体燃料的良好材料,利用微藻热化学液化制备生物油在环保和能源供应方向都具有非常重要的意义。目前国内外研究者主要采用快速热解液化和直接液化两种热化学转化技术进行以微藻为原料制备生物油的研究。快速热解生产过程在常压下进行,工艺简单、成本低、反应迅速、燃料油收率高、装置容易大型化,是目前最具开发潜力的生物质液化技术之一。但快速热解需要对原料进行干燥和粉碎等预处理,微藻含水率极高,会消耗大量的能量,使快速热解技术在以微藻为原料制备生物油方面受到限制。直接液化技术反应温度较快速热解低,原料无需烘干和粉碎等高耗能预处理过程,且能产生更优质的生物油,将会是微藻热化学液化制备生物油发展的主流方向,极具工业化前景。国内外研究者还尝试利用超临界液化、共液化、热化学催化液化、微波裂解液化等多种新型液化工艺进行微藻热化学液化制备生物油的实验研究。今后的主要研究方向应是将热化学液化原理研究、生产工艺开发、反应器研发、反应条件优化、产品精制等有机地结合起来,进行深入研究。同时应努力节约成本、降低能耗。  相似文献   

5.
The heavy palm oil industry in Malaysia has generated various oil palm biomass residues. These residues can be converted into liquids (bio-oil) for replacing fossil-based fuels and chemicals. Studies on the conversion of these residues to bio-oil via pyrolysis technology are widely available in the literature. However, thermochemical liquefaction of oil palm biomass for bio-oil production is rarely studied and reported. In this study, palm kernel shell (PKS) was hydrothermally liquefied under subcritical and supercritical conditions to produce bio-oil. Effects of reaction temperature, pressure and biomass-to-water ratio on the characteristics of bio-oil were investigated. The bio-oils were analyzed for their chemical compositions (by GC–MS and FT-IR) and higher heating values (HHV). It was found that phenolic compounds were the main constituents of bio-oils derived from PKS for all reaction conditions investigated. Based on the chemical composition of the bio-oil, a general reaction pathway of hydrothermal liquefaction of PKS was postulated. The HHV of the bio-oils ranged from 10.5 to 16.1 MJ/kg, which were comparable to the findings reported in the literature.  相似文献   

6.
生物质高压液化制生物油研究进展   总被引:2,自引:0,他引:2  
以生物质为原料进行高压液化制备生物油是目前生物质能领域研究的一个热点。纤维素在水中的降解是复杂的竞争和连串反应机理;在180℃以上,半纤维素就很容易水解,而且不管是酸还是碱都能催化半纤维素的水解反应;在水热条件下木质素会发生分解,生成多种苯酚、甲氧基苯酚等,这些产物可进一步被水解成甲氧基化合物。影响生物质液化产率及生物油组成的主要因素是温度、生物质类型和溶剂种类;次要因素包括停留时间、催化剂、还原性气体和供氢溶剂、加热速率、生物质颗粒大小、反应压力等。纤维素类生物质通过高压液化可以生产生物油,生物油经物理精制及化学加工可以制取车用燃料、生物气及化工产品等。生物油有轻油和重油之分,都是通过对生物质液化产物的分离精制而得到的。目前用来分析生物油的主要方法包括GC-MS(色-质联用)、EA(元素分析)、FTIR(傅里叶变换红外光谱)、HPLC(高效液相色谱)、NMR(核磁共振)、TOC(总有机碳测定)等。人们对生物质高压液化研究已经进行多年,并建立了几套工业试验示范装置。不过因为操作条件太苛刻,到目前为止还没有建立商业化装置。  相似文献   

7.
This work reports bio-oil production by hydrothermal liquefaction of blackcurrant pomace (Ribes nigrum L.), a fruit residue obtained after berry pressing. The bio-oil has a higher heating value of 35.9 MJ kg−1 and low ash content, which makes it suitable for energy applications. We report the influence of process parameters on yields and carbon distribution between products: temperature (563–608 K), holding time (0–240 min), mass fraction of dry biomass in the slurry (0.05–0.29), and initial pH (3.1–12.8) by adding sodium hydroxide (NaOH). Depending on the experiments, the bio-oil accounts for at least 24% mass fraction of the initial dry biomass, while char yields ranges from 24 to 40%. A temperature of 583 K enhances the bio-oil yield, up to 30%, while holding time does not have a significant influence on the results. Increasing biomass concentrations decreases bio-oil yields from 29% to 24%. Adding sodium hydroxide decreases the char yield from 35% at pH = 3.1 (without NaOH) to 24% at pH = 12.8. It also increases the bio-oil yield and carbon transfer to the aqueous phase. Thermogravimetric analysis shows that a 43% mass fraction of the bio-oil boils in the medium naphtha petroleum fraction range. The bio-oil is highly acidic and unsaturated, and its dynamic viscosity is high (1.7 Pa s at 298 K), underlining the need for further upgrading before any use for fuel applications.  相似文献   

8.
介绍了生物质热加工液化技术中的各种热裂解液化和高压液化工艺,包括流化床、涡流烧蚀反应器、真空快速裂解反应器以及高压釜、半连续固定床等装置的工作原理和生产工艺,分析它们各自的优点和存在的问题,着重讨论了各种工艺提高生物原油产率的措施以及精制生物原油可替代柴油作为车用轻质燃油的方法,指出降低生物原油的生产成本,扩大生产规模是热加工液化的发展方向。  相似文献   

9.
Since the energy crises of the 1970s, many countries have become interest in biomass as a fuel source to expand the development of domestic and renewable energy sources and reduce the environmental impacts of energy production. Biomass is used to meet a variety of energy needs, including generating electricity, heating homes, fueling vehicles and providing process heat for industrial facilities. The methods available for energy production from biomass can be divided into two main categories: thermo-chemical and biological conversion routes. There are several thermo-chemical routes for biomass-based energy production, such as direct combustion, liquefaction, pyrolysis, supercritical water extraction, gasification, air–steam gasification and so on. The pyrolysis is thermal degradation of biomass by heat in the absence of oxygen, which results in the production of charcoal (solid), bio-oil (liquid), and fuel gas products. Pyrolysis liquid is referred to in the literature by terms such as pyrolysis oil, bio-oil, bio-crude oil, bio-fuel oil, wood liquid, wood oil, liquid smoke, wood distillates, pyroligneous tar, and pyroligneous acid. Bio-oil can be used as a fuel in boilers, diesel engines or gas turbines for heat and electricity generation.  相似文献   

10.
生物质热解生物油与柴油乳化的试验研究   总被引:2,自引:0,他引:2  
通过生物质热解生物油模型化合物与柴油乳化的研究确定了乳化剂合适的HLB范围,在该范围内稻壳热解生物油与柴油的乳化效果良好,同时研究了生物油贮存时间对乳化效果的影响。在柴油、乳化剂和生物油质量分数分别为92%、3%和5%,试验研究了不同种类生物质热解生物油与柴油的乳化性能,乳化燃料在热值上接近柴油,粘度符合国家轻柴油标准,具有商业应用的可能。最后通过生物油和柴油乳化的三组分相图分析了形成稳定乳液时三组分的相对含量变化。  相似文献   

11.
Energy from biomass, bioenergy, is a promising source to replace fossil fuels in the future, as it is abundant, clean, and carbon dioxide neutral. Thermochemical liquefaction of biomass is widely investigated as a promising method to produce one kind of liquid biofuel, namely bio-oil. This review presents the recent research progress in the liquefaction of typical biomass from a new perspective. Particularly, this article summarizes five aspects of related work: first, the effect of solvent type on the liquefaction behaviors of biomass; second, the effect of biomass type on the liquefaction behaviors of biomass; third, the liquefaction of biomass in sub-/super-critical ethanol; fourth, the liquefaction of biomass in organic solvent–water mixed solvents; fifth, the liquefaction of sewage sludge. Meanwhile, the research advance in the migration and transformation behavior of heavy metals during the liquefaction of sewage sludge was also summarized in this review. This review can offer an important reference for the study of biomass liquefaction.  相似文献   

12.
This study examined bio-oil and bio-char fuel produced from Spirulina Sp. by slow pyrolysis. A thermogravimetric analyser (TGA) was used to investigate the pyrolytic characteristics and essential components of algae. It was found that the temperature for the maximum degradation, 322 °C, is lower than that of other biomass. With our fixed-bed reactor, 125 g of dried Spirulina Sp. algae was fed under a nitrogen atmosphere until the temperature reached a set temperature between 450 and 600 °C. It was found that the suitable temperature to obtain bio-char and bio-oil were at approximately 500 and 550 °C respectively. The bio-oil components were identified by a gas chromatography/mass spectrometry (GC–MS). The saturated functional carbon of the bio-oil was in a range of heavy naphtha, kerosene and diesel oil. The energy consumption ratio (ECR) of bio-oil and bio-char was calculated, and the net energy output was positive. The ECR had an average value of 0.49.  相似文献   

13.
This article reviews the hydrothermal liquefaction of biomass with the aim of describing the current status of the technology. Hydrothermal liquefaction is a medium-temperature, high-pressure thermochemical process, which produces a liquid product, often called bio-oil or bi-crude. During the hydrothermal liquefaction process, the macromolecules of the biomass are first hydrolyzed and/or degraded into smaller molecules. Many of the produced molecules are unstable and reactive and can recombine into larger ones. During this process, a substantial part of the oxygen in the biomass is removed by dehydration or decarboxylation. The chemical properties of bio-oil are highly dependent of the biomass substrate composition. Biomass constitutes of various components such as protein; carbohydrates, lignin and fat, and each of them produce distinct spectra of compounds during hydrothermal liquefaction. In spite of the potential for hydrothermal production of renewable fuels, only a few hydrothermal technologies have so far gone beyond lab- or bench-scale.  相似文献   

14.
The use of model bio-oil from pyrolysis biomass as a fuel was improved by forming diesel microemulsion using rhamnolipid (RL) as the surfactant. After microemulsification, synthetic bio-oil components were solubilized in different positions of the microemulsion. Water and some hydrophilic substances were solubilized in the hydrophilic core of the microemulsion, glyoxal, and vanillin in the palisade layer, and guaiacol in the diesel continuous phase. The bio-oil components species and their solubilization positions in the microemulsion fuel system had considerable effect on properties of the fuel, e.g., degradation/combustion characteristics as determined by thermogravimetric analysis.  相似文献   

15.
A model of wood flash pyrolysis in fluidized bed reactor   总被引:3,自引:0,他引:3  
With a view of exploiting renewable biomass energy as a highly efficient and clean energy, liquid fuel from biomass pyrolysis, called bio-oil, is expected to play a major role in future energy supply. At present, fluidized bed technology appears to have maximum potential in producing high-quality bio-oil. A model of wood pyrolysis in a fluidized bed reactor has been developed. The effect of main operation parameters on wood pyrolysis product distribution was well simulated. The model shows that reaction temperature plays a major important role in wood pyrolysis. And a good agreement between experimental and theoretical results was obtained. It was shown that particles less than 500 μm could achieve a high heating-up rate to meet flash pyrolysis demand.  相似文献   

16.
生物质液化技术可将低品位的固体生物质完全转化成高品位的液体燃料或化学品,是生物质能高效利用的主要方式之一。按照机理,液化技术可以分为热化学法、生化法、酯化法和化学合成法(间接液化),热化学法液化又分为快速热解技术和高压液化(直接液化)技术。生物质热化学法液化已成为国内外生物质液化的研究开发重点和热点,快速热解液化技术和高压液化技术是最具产业化前景的生物质能技术,生化法液化技术也是生物质能的研究热点。化学合成法液化技术并不适用于生物质液化,而利用生物柴油进一步生产生物航空煤油是得不偿失的,不仅成本高、资源利用率低,而且全生命周期碳排放增加,还不符合未来生物航煤的发展趋势。生物质含水量的高低是影响生物质液化过程中能耗、效率、污染指数和经济性指标等的关键因素,应根据含水量合理选择生物质液化技术。快速热解液化技术适用于低含水农林废弃物,高压液化和生化法液化技术适用于高含水生物质,酯化法液化技术适用于不可食用油脂,而各种液化技术均不适用于城市生活垃圾的处理,建议将其用作燃气型气化原料。  相似文献   

17.
Empty fruit bunch (EFB) from oil palm is one of the potential biomass to produce biofuels like bio-oil due to its abundant supply and favorable physicochemical characteristics. Confirming the assertion, this paper presents an overview of EFB as a feedstock for bio-oil production. The fundamental characteristics of EFB in terms of proximate analysis, ultimate analysis and chemical composition, as well as the recent advances in EFB conversion processes for bio-oil production like pyrolysis and solvolysis are outlined and discussed. A comparison of properties in terms of proximate analysis, ultimate analysis and fuel properties between the bio-oil from EFB and petroleum fuel oil is included. The major challenges and future prospects towards the utilization of EFB as a useful resource for bio-oil production are also addressed.  相似文献   

18.
《能源学会志》2020,93(4):1705-1712
This study investigated the hydro-liquefaction behaviors of cellulose, xylan and lignin in ethanol at various temperatures. The interactions between the reaction medium and individual biomass component under different temperatures were evaluated using the Monte Carlo method. The simulation results indicated that the compatibility from cellulose and xylan system was superior to that of lignin with the elevated temperature. The liquefaction characteristics of cellulose and xylan were highly affected by temperature variation due to the existence of active chemical region and functional groups in the structures. In comparison, the reaction behavior of lignin-containing complicated polyaromatic structure was slightly dependent on the elevated temperature. The variation trend of chemical structures from solid residues was highly related to the nature of the raw feedstock. The properties of bio-oil derived from liquefaction of single biomass composition were also associated with the inherent composition of each biomass subcomponent.  相似文献   

19.
微藻热化学催化液化及生物油特性研究   总被引:2,自引:0,他引:2  
以杜氏盐藻为原料,乙二醇为液化介质、浓硫酸为催化剂进行热化学液化反应.运用中心组合设计及响应面分析(RSA),在单因素试验的基础上建立了预测杜氏盐藻液化产率的数学模型.回归分析表明,液化温度、停留时间与催化剂用量及其交互作用对液化都有显著影响.以液化产率为响应值作响应面和等高线图,揭示了各参数交互关系.通过响应面优化,求得最佳工艺条件为:催化剂用量2.4%,液化温度170℃,停留时间33min,在此条件下液化率达到97.05%.基于生物油广泛应用的目的,对产物生物油的物理化学性质进行了研究,并结合FT-IR、~(13)C-NMR、GC-MS等技术对生物油的主要组分分布进行了分析.结果表明:生物油的主要成分为苯并呋喃酮30.43%、C14~C18有机酸甲酯23.25%和C14~C18有机酸羟乙基酯27.89%.生物油由于高的含氧量,需要进一步改性才能高端应用.  相似文献   

20.
The motivation for this research was to determine the influence of public policies on economic feasibility of producing algal biodiesel in a system that produced all its energy needs internally. To achieve this, a steady-state mass balance/unit operation system was modeled first. Open raceway technology was assumed for the production of algal feedstock, and the residual biomass after oil extraction was assumed fermented to produce ethanol for the transesterification process. The project assumed the production of 50 million gallons of biodiesel per year and using about 14% of the diesel output to supplement internal energy requirements. It sold the remainder biodiesel and ethanol as pure biofuels to maximize the rents from the renewable fuel standards quota system. Assuming a peak daily yield of 500 kg algal biomass (dry basis)/ha, the results show that production of algal biodiesel under the foregoing constraints is only economically feasible with direct and indirect public policy intervention. For example, the renewable fuel standards' tracking RIN (Renewable fuel Identification Number) system provides a treasury-neutral value for biofuel producers as does the reinstatement of the renewable fuel tax credit. Additionally, the capital costs of an integrated system are such that some form of capital cost grant from the government would support the economic feasibility of the algal biodiesel production.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号