首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 765 毫秒
1.
为研究预混气体在多孔介质燃烧器中的火焰燃烧特性,设计了一种新型多孔介质燃烧器,其中多孔介质区域由氧化铝圆柱体有序堆积而成。分别研究了当量比和入口速度对甲烷/空气预混气体在多孔介质燃烧器中的火焰温度分布、火焰最高温度以及火焰传播速度的影响。结果表明:在当量比0.162~0.324、入口速度0.287~0.860 m/s的实验工况下火焰均可以稳定向前传播,并且都发生了超绝热燃烧;当量比越大,入口速度越大,火焰最高温度越高;当入口速度为0.430 m/s时,贫可燃极限的当量比可以扩展到0.162;火焰传播速度随着入口速度的增加和当量比的减小而增大,其数量级为0.100 mm/s,属于一种十分典型的低速过滤燃烧。  相似文献   

2.
基于多孔介质燃烧的端部辐射器的实验研究   总被引:1,自引:0,他引:1  
设计了基于多孔介质燃烧技术的端部辐射器,研究不同预混气体流速(功率)下当量比对燃烧器燃烧稳定性、多孔介质内部温度、辐射器表面温度及其均匀性、污染物排放、辐射效率等特性的影响.结果表明,燃烧器辐射表面的温度均匀性较好.最大相对温差小于3%:多孔介质燃烧器可实现最低当量比0.33的稳定可持续燃烧;小功率燃烧时.多孔介质内部温度及端部辐射表面温度都随当量比增大而增加,且流量越大增加程度越大,可据此提出实现更高辐射表面温度的方案.实验工况范围内.最大辐射效率达23%;NO<,x>排放体积分数低于25×10<'6>,在当量比大于0.45时,CO排放体积分数均低于10×10<'6>.  相似文献   

3.
针对甲烷的富燃燃烧,设计开发了包含不同直径大小氧化铝球的两段式多孔介质燃烧器系统,研究了甲烷在添加催化剂前后的部分氧化富燃重整制取合成气的相关特性.通过调节入口气体流速和当量比,确定了多孔介质燃烧器的稳定操作区间,研究了流速和当量比对多孔介质燃烧中温度和组分的影响.结果表明,采用Ni基催化剂担载下游氧化铝球后,入口气体流速为0.15m/s,当量比为1.6时,甲烷的重整转化率可以提升至43.5%.  相似文献   

4.
利用自行设计的多孔介质实验台,对C_2H_4-AIR-N_2预混气体在多孔介质燃烧器内的燃烧特性进行了实验研究,分析燃料当量比、预混气体流速以及N_2稀释比对预混气体的可燃极限、火焰传播方向、火焰温度分布以及污染物排放的影响。研究表明:随着稀释比的上升,预混气体的可燃极限范围缩小,火焰向上游传播的工况逐渐减少;燃烧器内最高火焰温度与当量比以及气体流速正相关,与稀释比负相关;CO的排放量随着稀释比的上升而增加,与当量比以及气体流速负相关;实验中的NO排放量小于20 mg/m~3。  相似文献   

5.
使用双温度体积平均模型、详细化学反应机理GRI3.0,对甲烷,空气预混气在多孔介质燃烧器内的预混火焰进行模拟.分析不同当量比和质量流量下的预热效率、辐射输出效率以及污染物排放情况,并对辐射输出效率随多孔介质热物性参数的变化进行敏感性分析.结果表明,增大相间对流换热系数或减小当量比、质量流量及固相消光系数都可以提高辐射输出效率,减小当量比或质量流量可以减少污染物排放.在所有的影响因素中,当量比的影响最大,发展超贫燃燃烧技术是获得高效低污染多孔介质燃烧器的关键.  相似文献   

6.
考查了两段式多孔介质内预混气燃烧的温度与压力分布情况。建立了甲烷/空气预混气体在多孔介质内燃烧的二维数学模型,运用FLUENT软件求解瞬态控制方程的方法计算出燃烧稳定后多孔介质内的温度、与压力分布,并考查了不同当量比、多孔介质辐射衰减系数和导热系数对温度和压力分布的影响。结果表明,甲烷/空气预混气体在多孔介质中燃烧,当量比越大温度峰值越高,压力梯度越大;小孔介质辐射衰减系数的改变对温度分布和压力分布没有明显的影响,而大孔介质辐射衰减系数对温度分布和压力分布有较大的影响;增加多孔介质的导热系数,会使固相与气相温度均有所升高,燃烧区域压力降低。  相似文献   

7.
氨具有氢密度高、生产成本低、基础设施完善等优点,作为一种潜在的可再生替代燃料受到了广泛的关注。目前,仅有少数研究关注氨气燃烧喷嘴的研究,针对氨气稳定燃烧喷嘴的研究尤其不足。为实现氨燃料的稳定燃烧和低污染物排放,本研究提出了一种氨用多孔介质燃烧器。对氨用多孔介质燃烧器建立了二维数值模型,并对预混氨/空气在多孔介质燃烧器中的燃烧性能进行了评价,考察了不同进口速度u0、当量比Φ和多孔介质导热系数对氨/空气火焰特性和NO排放的影响。结果表明,多孔介质燃烧器能在u0 = 3 ~ 7 m/s和Φ = 0.9 ~ 1.2条件下稳定燃烧;随着多孔介质导热系数的增大,火焰最高温度下降且火焰位置向上游移动;减小进口速度和增大当量比能够显著降低NO的排放。  相似文献   

8.
渐变型多孔介质中预混燃烧温度分布试验   总被引:3,自引:0,他引:3  
进行了预混天然气在等孔隙率渐近变孔径的多孔介质中的燃烧试验,用热电偶测量了燃烧室温度分布,并与单一孔径(d=1mm)的均匀多孔介质中燃烧结果进行了比较。结果表明,渐变型多孔介质燃烧器比均匀型多孔介质燃烧器具有更多的优点:燃烧室温度分布更加均匀,燃烧更加稳定,并能更好的适应当量比和流量/功率的变化,由于孔径的变化,多孔介质中气流扰动增加,有利于火焰的稳定,当量比和流速变化范围增大。  相似文献   

9.
多孔介质中预混火焰猝熄及自稳定性研究   总被引:3,自引:0,他引:3  
分析了多孔介质中预混火焰的猝熄效应,试验测定了一系列工况下泡沫陶瓷的猝熄直径和自稳定范围,为多孔介质燃烧器的开发设计提供了依据。通过分析发现,猝熄直径受到多个参数的影响,包括:混合气体的流速u、预混气体的层流火焰传播速度SL、燃烧室空管Re、预混气体的导温系数a、当量比φ以及多孔介质固体温度Ts。通过对多孔介质中燃烧的自稳定性试验研究,发现了多孔介质燃烧器中火焰稳定极限(吹脱极限和回火极限)与多孔介质平均孔径和气流速度及燃烧当量比的关系。  相似文献   

10.
采用计算流体力学软件Fluent,对H_2/空气预混气在全填充多孔介质平板微燃烧器内的燃烧过程进行数值模拟.研究了多孔介质导热系数、壁面导热系数、当量比、孔隙率对微燃烧器回热循环的影响规律.模拟结果表明:预热区对流回热效率、多孔介质导热效率与多孔介质导热系数呈正相关趋势;壁面导热系数增大会使预热区对流回热效率下降,壁面对流回热效率上升;预热区对流回热效率、壁面对流回热效率与当量比呈负相关趋势;多孔介质孔隙率是影响回热效率的重要因素,随着孔隙率的增大,预热区对流回热效率下降,壁面对流回热效率上升.  相似文献   

11.
The homogeneous charge compression ignition is an alternative combustion technology that can reduce automobile pollution, provided that the exhaust emission can be controlled. A parametric study can be useful in order to gain more understanding in the emission reduction possibilities via this new combustion technology. For this purpose, the inlet temperature, the equivalence ratio and the compression ratio are changed, respectively, from 30 to 70 °C, 0.28 to 0.41 and 6 to 14. Also the diluting, thermal and chemical effects of exhaust gas recirculation were studied. The emission of CO, CO2, O2 and hydrocarbons has been measured using primary reference fuels. It appears that an increase in the inlet temperature, the EGR temperature, the equivalence ratio and the compression ratio results into a decrease of the emissions of CO and the hydrocarbons of up to 75%. The emission of CO2 increased, however, by 50%. The chemical parameters showed more complicated effects, resulting into a decrease or increase of the emissions, depending on whether the overall reactivity increased or not. If the reactivity increased, generally, the emissions of CO and hydrocarbons increased, while that of CO2 increased. The increase of CO2 emissions could be compensated by altering the compression ratio and the EGR parameters, making it possible to control the emission of the HCCI engine.  相似文献   

12.
The rich catalytic combustion of syngas/air mixtures over platinum has been investigated numerically in a two-dimensional circular channel using steady simulations and detailed hetero-homogeneous chemistry. The channel dimensions are representative of a catalytic monolith. Simulations have been conducted in the pressure range of 1–10 bar and Φ = 3–5 with varying inlet velocities, residence time, H2/CO ratio and CH4 percentage. Detailed kinetic studies including the reaction path diagram (RPD) in a plug flow reactor have also been conducted to understand the kinetic interactions between H2, CO, and CH4. It has been observed that the homogeneous reaction rates are significant at higher pressures and cannot be neglected, although they were highly localized. The channel temperature significantly affected the relative conversion of H2 and CO. The kinetic coupling between H2 and CO oxidation was studied and the reason for the differential consumption of O2 by the reactants was addressed by analyzing the reaction pathways. The residence time in the channel affected the species oxidation and four operation regimes were identified. Both the water-gas shift reaction and the reverse water-gas shift reaction were observed under varying conditions of pressure and equivalence ratio. The effect of H2/CO ratio has also been investigated. The present study shows that rich catalytic combustion of syngas is fundamentally different from lean combustion.  相似文献   

13.
A common method for the production of hydrogen and syngas is solid fuel gasification. This paper discusses the experimental results obtained from the combustion of lean natural gas–air mixtures in a porous medium composed of aleatory alumina spheres and wood pellets, called hybrid bed. Temperature, velocity, and chemical products (H2, CO, CO2, CH4) of the combustion waves were recorded experimentally in an inert bed (baseline) and hybrid bed (with a volume wood fraction of 50%), for equivalence ratios (φ) from 0.3 to 1.0, and a constant filtration velocity of 15 cm/s. Upstream, downstream and standing combustion waves were observed for inert and hybrid bed. The maximum hydrogen conversion in hybrid filtration combustion is found to be ∼99% at φ = 0.3. Results demonstrate that wood gasification process occurs with high temperature (1188 K) and oxygen available, and the lean hybrid filtration process can be used to reform solid fuels into hydrogen and syngas.  相似文献   

14.
The present work focuses on studying experimentally and numerically the oxy‐fuel combustion characteristics inside a porous plate reactor towards the application of oxy‐combustion carbon capture technology. Initially, non‐reactive flow experiments are performed to analyze the permeation rate of oxygen in order to obtain the desired stoichiometric ratios. A numerical model is developed for non‐reactive and reactive flow cases. The model is validated against the presently recorded experimental data for the non‐reacting flow cases, and it is validated against the available literature data for oxy‐fuel combustion for the reacting flow cases. A modified two‐step oxy‐combustion reaction kinetics model for methane is implemented in the present model. Simulations are performed over wide range of operating oxidizer ratios (O2/CO2 ratio), from OR = 0.2 to OR = 0.4, and over wide range of equivalence ratios, from φ = 0.7 to φ = 1.0. The flame length was decreased as a result of the increase of the oxidizer ratio. Effects of CO2 recirculation amount on the oxy‐combustion flame stability are examined. A reduction in combustion temperature and increase in flame fluctuations are encountered while increasing CO2 concentration inside the reactor. At high equivalence ratio, the combustion temperature and flame stability are improved. At low equivalence ratio, the flame length is increased, and the flame was moved towards the reactor center line. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

15.
The combustion characteristics of liquefied petroleum gas inside porous heating burners have been investigated experimentally under steady-state and transient conditions. Cooling tubes were embedded in the postflame region of the packed bed of a porous heating burner. The flame speed, temperature profile, and [NOx] and [CO] in the product gases were monitored during an experiment. Due to the heat removal by the cooling tubes, a phenomenon termed metastable combustion was observed; this is that only one flame speed exists at a particular equivalence ratio for maintaining stable combustion within the porous bed of the porous heating burner. This behavior is quite different from that of porous burners without cooling tubes, in which an extended range of flame speeds usually is found for maintaining stable combustion. After metastable combustion has been established in a porous heating burner, a change in the equivalence ratio will stop the metastable combustion and drive the flame out of the packed bed. From the steady-state results, the porous heating burner was shown to maintain stable combustion under fuel-lean conditions with an equivalence ratio lower than the flammability limit of a normal free-burning system. The flame speed in a porous heating burner was found to decrease with an increase in the length of the porous bed. Combustion within a porous heating burner has the features of low flame temperature, extended reaction zone, high preheating temperature and low emissions of NOx and CO. The flame temperature ranged from 1050 to 1250 °C, which is ∼200 °C lower than the adiabatic flame temperature at the corresponding equivalence ratio. The length of the reaction zone could be more than 70 mm and the preheating temperature ranged from 950 to 1000 °C. Both [NOx] and [CO] were low, typically below 10 ppm.  相似文献   

16.
The objective of this study was to investigate the performance and emissions of a pilot-ignited, supercharged, dual-fuel engine powered by different types of syngas at various equivalence ratios. It was found that if certain operating conditions were maintained, conventional engine combustion could be transformed into combustion with two-stage heat release. This mode of combustion has been investigated in previous studies with natural gas, and has been given the name PREmixed Mixture Ignition in the End-gas Region (PREMIER) combustion. PREMIER combustion begins as premixed flame propagation, and then, because of mixture autoignition in the end-gas region, ahead of the propagating flame front, a transition occurs, with a rapid increase in the heat release rate. It was determined that the mass of fuel burned during the second stage affected the rate of maximum pressure rise. As the fuel mass fraction burned during the second stage increased, the rate of maximum pressure rise also increased, with a gradual decrease in the delay between the first increase in the heat release rate following pilot fuel injection and the point when the transition to the second stage occurred. The H2 and CO2 content of syngas affected the engine performance and emissions. Increased H2 content led to higher combustion temperatures and efficiency, lower CO and HC emissions, but higher NOx emissions. Increased CO2 content influenced performance and emissions only when it reached a certain level. In the most recent studies, the mean combustion temperature, indicated thermal efficiency, and NOx emissions decreased only when the CO2 content of the syngas increased to 34%. PREMIER combustion did not have a major effect on engine cycle-to-cycle variation. The coefficient of variation of the indicated mean effective pressure (COVIMEP) was less than 4% for all types of fuel at various equivalence ratios, indicating that the combustion was within the stability range for engine operation.  相似文献   

17.
A porous burner stacked in turn with 3‐ and 9‐mm alumina pellets was established to perform C2H4 combustion experiments by acquiring the flammable limits, temperature variation characteristics, combustion wave velocity, pollutant emissions, and treatment efficiency. The burner operated well at equivalence ratios within 0.3 to 0.7. Larger alumina pellets widened the burner's lower flammable limit. As the flame propagated downstream, the higher premixed gas flow velocity and larger alumina pellets, the higher combustion wave velocity, whereas the circumstances were opposite as the flame spread upstream. The combustion temperature increased with the equivalence ratio and premixed gas flow velocity. In response to the effect of the alumina pellet dimension, 3‐mm alumina pellets corresponded to higher combustion temperatures, lower CO emissions, and higher treatment efficiency than those less than 9‐mm conditions.  相似文献   

18.
Flameless combustion is a well known measure to reduce NOx emissions in gas combustion but has not yet been fully adapted to pulverised coal combustion. Numerical predictions can provide detailed information on the combustion process thus playing a significant role in understanding the basic mechanisms for pollutant formation. In simulations of conventional pulverised coal combustion the gasification by CO2 or H2O is usually omitted since its overall contribution to char oxidation is negligible compared to the oxidation with O2. In flameless combustion, however, due to the strong recirculation of hot combustion products, primarily CO2 and H2O, and the thereby reduced concentration of O2 in the reaction zone the local partial pressures of CO2 and H2O become significantly higher than that for O2. Therefore, the char reaction with CO2 and H2O is being reconsidered. This paper presents a numerical study on the importance of these reactions on pollutant formation in flameless combustion. The numerical models used have been validated against experimental data. By varying the wall temperature and the burner excess air ratio, different cases have been investigated and the impact of considering gasification on the prediction of NO formation has been assessed. It was found that within the investigated ranges of these parameters the fraction of char being gasified increases up to 35%. This leads to changes in the local gas composition, primarily CO distribution, which in turn influences NO formation predictions. Considering gasification the prediction of NO emission is up to 40% lower than the predicted emissions without gasification reactions being taken into account.  相似文献   

19.
The work investigates the reacting flow field, oxy‐methane flame characteristics and location, and the species distributions in a porous‐plate reactor mimicking the operation of oxygen transport membrane reactors (OTMRs). The study was performed experimentally and numerically considering ranges of operating equivalence ratio, from 0.5 to 1.0, and CO2 concentrations in the total oxidizer flow (O2 and CO2), from 0% to 55% (by Vol). Oxygen was supplied through a slightly pressurized top and bottom chambers to cross the two porous plates to the central chamber, where a premixed mixture of CH4 and CO2 is introduced. ANSYS Fluent 17.1 software was used to solve for conservation and radiative transfer equations in the full three‐dimensional (3‐D) domain. The modified Westbrook‐Dryer (Oxy‐WD) two‐step reduced mechanism for oxy‐methane combustion was adapted for the calculations of chemical kinetics. The captured flame shapes using a high‐speed camera were compared with the calculated ones, and the results showed good agreements. At fixed equivalence ratio, elongated flames were obtained at higher CO2 concentrations due to the increase in the mainstream Reynolds number and reduction in reaction rates, which delays the completeness of combustion. At fixed CO2 concentration, the increase in equivalence ratio resulted in more compact and intense flames. The effective mixing and flame stability resulted in complete fuel conversion under stoichiometric condition. Stable flames were located between the two porous plates at reasonable distance. This perfect flame location prevents the thermal fracture of the membranes and improves their oxygen permeation flux, resulting in better combustion characteristics when the results are projected on the case of OTMRs. This implies efficient and safe applicability of the OTMRs by the condition that membranes can provide sufficient oxygen flux for complete combustion. A warm outer recirculation zone (ORZ) was created beside each porous plate, which helps anchoring the flame at the leading edge of the porous plate. The range of temperature within the ORZ was 800 to 1600 K, which lies in the operability limits of membranes for the case of OTMRs. The effective complete mixing and flame stability resulted in complete fuel conversion under stoichiometric condition. The temperature and species distributions within the reactor are presented in detail over wide ranges of operating conditions. The results recommended the reactor operation under stoichiometric combustion condition based on performance and economic points of views. The results are promising when projected on the application of the OTMRs under oxy‐combustion conditions for clean and efficient energy production.  相似文献   

20.
Species concentration measurements specifically those associated with nitrogen oxides (NOx) can act as important validation targets for developing kinetic models to predict NOx emissions under syngas combustion accurately. In the present study, premixed combustion of syngas/air mixtures, with equivalence ratio (Φ) from 0.5 to 1.0 and H2/CO ratio from 0.25 to 1.0 was conducted in a McKenna burner operating at atmospheric pressure. Temperature and NOx concentrations were measured in the post-combustion zone. For a given H2/CO ratio, increasing the equivalence ratio from lean to stoichiometric resulted in an increase in NO and decrease in NO2 concentration near the flame. Increasing the H2/CO ratio led to a decrease in the temperature as well as the NO concentration near the flame. Based on the axial profiles above the burner, NO concentration increases right above the flame while NO2 concentration decreases through NO2-NO conversion reactions according to the path flux analysis. In addition, the present experiments were operated in the laminar region where multidimensional transport effects play significant roles. In order to account for the radial and axial diffusive and convective coupling to chemical kinetics in laminar flow, a multidimensional model was developed to simulate the post-combustion species and temperature distribution. The measurements were compared against both multidimensional computational fluid dynamics (CFD) simulations and one-dimensional burner-stabilized flame simulations. The multidimensional model predictions resulted in a better agreement with the measurements, clearly highlighting the effect of multidimensional transport.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号