共查询到18条相似文献,搜索用时 46 毫秒
1.
2.
设计了多孔介质回热徽燃烧器,对微燃烧器内H2/Ak的预混燃烧特性进行了实验研究和数值模拟,实验结果表明,当过量空气系数1.0<α<3.0时,微燃烧器具有较高的燃烧效率,出口烟气温度和较低的燃烧热损失率,且燃烧热功率P越高,α越大,热损失率越小.当P=100 W时,其出口烟气温度最高可达到1 232 K,当α=3.0时,燃烧效率仍达到96.85%,而热损失率仅为14.87%.数值模拟结果表明,由于采用了回热夹层和多孔介质回热结构,有效地回收了热量损失,使得微燃烧器具有良好的热性能.证明设计的多孔介质回热微燃烧器是一种燃烧效率高、热损失率低的微燃烧器. 相似文献
3.
多孔介质中预混火焰燃烧速率的预示 总被引:9,自引:0,他引:9
本文提出了一种预估多孔介质中预混火焰燃烧速率的方法。在构成气,固两相合一模型的基础上,用光学厚极限条件下的扩散近似法简化其中的热辐射项,从而由基本能量方程导出计算火焰传播速度的迭代关系式,其中包含综合多孔介质传导和辐射的等效导热系数。然后应用此数值迭代法,分别计算出在多孔泡沫陶瓷中层流预混火焰及无多孔介质存在的自由火焰的燃烧速率。 相似文献
4.
5.
本文考虑向燃烧室中插入高孔隙率的多孔介质的燃烧过程,根据气固两相局部非热平衡假设,建立了混合气体在惰性多孔介质中预混燃烧的一维数学模型,模拟了不同条件下甲烷-空气的预混合气在多孔介质中燃烧时的温度分布及气体流速、当量比和吸收系数对燃烧室气体温度峰值的影响.结果表明,多孔介质的存在明显改善了燃烧室的换热性能,强化了对新鲜混合气的预热,加速了燃烧反应的进行,燃烧室利用率提高. 相似文献
6.
7.
8.
分段多孔介质燃烧器二次进气燃烧排放研究 总被引:5,自引:0,他引:5
对从中间段——燃烧管中上游段多孔泡沫陶瓷与下游段多孔泡沫陶瓷之间的一段间隙结构 ,引入二次空气的多孔介质燃烧器的 CO和 NO排放浓度进行了实验测试 ,较系统地研究了化学当量比、混合气流率和不同比率二次空气对天然气 /空气燃烧排放的影响。结果表明 ,加入适当比率的二次空气 ,不仅能够在相当宽的流速范围内使火焰很好地稳定在中间段 ,而且能得到低水平的 CO排放浓度 ,特别对较低当量比效果更为明显。同时 ,当火焰定位在中间段或近旁时 ,在化学当量比为 0 .4 5~ 0 .8范围内 NO的排放值能够低于 6× 10 - 6 ,达到了很理想的低排放水平 相似文献
9.
10.
11.
Premixed combustion in a porous medium burner is investigated numerically. A two‐dimensional steady, laminar flow model is used. A single‐step reaction of methane is used for the chemical kinetic model. The model also includes thermal radiation transport of the porous media that is placed inside the burner. The radiative transport equation is solved by using the discrete ordinate method. The results show that, for each equivalence ratio, the flame can be stabilized at various axial locations with different flame speeds. The flame temperature increases with the equivalence ratio and flame speed. Furthermore, the energy release rates are much higher than that of a free flame for the same equivalence ratio as a result of higher flame speed. © 2005 Wiley Periodicals, Inc. Heat Trans Asian Res, 35(1): 75–88, 2006; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/htj.20088 相似文献
12.
13.
14.
采用非预混稳态小火焰模型(Steady Flamelet Model,SFM)耦合110步甲烷燃烧简化机理和Realizable k-ε模型对反扩散-旋流低氮燃烧器进行模拟,对比分析了不同旋流角度(30°,45°和60°)及过量空气系数(1.05,110,115和1.20)下燃烧时燃烧室内各截面轴向速度分布、中心截面温度及NOx质量浓度分布。详细研究了燃烧室内天然气与空气的燃烧特性及NOx的排放规律。模拟结果表明:随着旋流叶片角度逐渐增大,燃烧室内回流作用逐渐增强,导致火焰长度变短、燃烧室内最高温度及出口NO质量浓度逐渐降低;在旋流叶片角度为60°时,出口NO质量浓度仅为114 mg/m3;随着过量空气系数逐渐增大,火焰末端温度逐渐提高,导致燃烧室出口NO排放量逐渐增大;在过量空气系数为1.2时,出口NO质量浓度达到294 mg/m3,相比于过量空气系数为1.05时,其NO排放量增加153%。 相似文献
15.
采用数值模拟方法研究了当量比对环管型燃烧室内燃烧及NO_x生成特性的影响,分析了不同当量比时燃烧室内流场、温度场、热力型NO_x生成速率分布、出口温度分布系数(OTDF)及出口NO_x浓度的变化。模拟过程中,保持空气量不变,通过调整入口甲烷量来改变当量比。研究表明:增大当量比,燃烧室内燃烧反应速率加快,轴向速度升高,高温区域沿径向扩张,其范围明显扩大,热力型NO_x生成速率加快,其高速率范围与高温区域重合,出口NO_x浓度上升,而OTDF始终处于合理范围内。因此,在当量比为0.48~0.54范围内,适当降低当量比有利于控制出口NO_x浓度。 相似文献
16.
17.
当量比对涡轮叶间燃烧性能影响的数值模拟 总被引:1,自引:0,他引:1
为探究涡轮叶间燃烧性能,设计了4种不同当量比的工况,利用 FLUENT 软件的 Realizable k-ε湍流模型、PDF 燃烧模型、DO 辐射模型和离散相模型对燃烧室的流动及燃烧进行数值模拟.结果表明:燃烧室能在广泛的当量比(2.59~0.81)下保持性能稳定,燃烧效率保持在96%以上、总压损失低于2.4%,气体温度提高650,K 左右;降低当量比,能够提高燃烧效率,降低 CO、UHC、NOx 等污染物排放,改善温度分布,但会造成更大的总压损失;最优当量比等于1.00,此时燃烧效率在99.95%以上,总压损失相对低(1.5%),出口径向温度呈抛物线型分布,最适合燃烧室设计.与文献对比发现,选取的工况合理,其结果对涡轮叶间燃烧室设计具有参考价值 相似文献
18.
采用高精度直接数值模拟的方法对氢气非预混燃烧流场进行了精细的预测.模拟所求解的控制方程为三维可压缩的无量纲形式的Navier-Stokes方程,采用六阶精度紧致差分格式,结合基于详细化学反应和输运过程的FGM化学反应机制,利用768个处理器核、共近4.53亿网格点进行了基于CPU的大规模高效并行计算,分析氢气非预混燃烧特性,并进一步探讨了浮力对氢气燃烧流场输运特性的影响.研究发现,由于氢气燃烧过程中产生不同扩散性质的化学组分,使燃烧过程中遵循优势扩散的行为.这将影响流场的输运特性和火焰不稳定性的形成.在浮力驱动的氢气优势扩散燃烧流场中,对流是质量、动量及热量输运行为的主要影响因素,而无浮力火焰中优势扩散主导着流场的输运特性.平均统计结果表明,有浮力和无浮力的燃烧流场中都可以捕捉到逆梯度输运现象,且浮力会促进逆梯度输运行为的发生. 相似文献