首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
A theoretical study on conjugated heat transfer (natural convection, radiation and conduction) in a square cavity with turbulent flow is presented. The cavity is a representation of a room, where the left wall is isothermal, the right wall is semitransparent (glass), the lower wall is considered as insulated and on the upper opaque wall heat conduction is present. Both conductive walls (opaque and semitransparent) interact with the ambient. The semitransparent wall is subject to a constant heat flux (G2 = 736 W/m2) whereas on the opaque wall a constant heat flux (G1 = 875 W/m2) falls perpendicularly. The sizes of the cavity under study were 5.0, 4.0, 3.0 and 2.0 m. The upper opaque wall was considered as a mixture of concrete and a composite material (concrete–expanded polystyrene) with different thicknesses and diverse types of water-repellent coatings on top of it. From the results, it was found that the white coating on top of the opaque wall significantly reduces the amount of energy towards the inside of the cavity. It was also determined that the opaque wall with a 20 cm thickness shows the best thermal performance and it is the most adequate to reduce thermal gains inside the cavity. Correlations for the total heat transfer as a function of the cavity size, the type of coating and material of the opaque upper wall are proposed.  相似文献   

2.
A theoretical study of the heat transfer process that takes place in a special calorimeter of conical cavity named CAVICAL is presented. This instrument is used to measure the thermal power of a point focus solar concentrator system named DEFRAC, developed at the Center for Energy Research of the National University of Mexico. The DEFRAC concentrator has a power of 1.3 kWth and a very fine optical system. The calorimeter has a cavity opening of 8.24 cm2. A detailed heat transfer study was done using FLUENT code. The heat transfer processes taken into account for the analysis were the radiative energy absorbed by the inner cavity wall, the energy transfer from the outer cavity wall to the air by natural convection, the energy transferred by conduction through the inner metallic wall of the calorimeter, and by forced convection to the fluid in the cooling system. The calorimetric information gathered allowed determining the thermal power that the concentrator is able to capture. Temperature and velocity fields have been calculated for each of the thermal fluids considered inside of the calorimeter. The analysis gave thermal losses and measured the thermal efficiency of the device. The information generated is useful to further optimize the design of the calorimeter.  相似文献   

3.
This work presents a numerical investigation of turbulent forced convection of a nanofluid over a heated cavity in a horizontal duct. Heat transfers in separated flows are frequently encountered in engineering applications, such as: heat exchangers, axial and centrifugal compressor blades, gas turbines blades, and microelectronic circuit boards. Thus, it is very essential to understand the mechanisms of heat transfer in such regions in order to enhance heat transfer. Different volume fractions of nanoparticles are presented in the base fluid and different types of nanoparticles are used. The objective of this study is to check the effect of nanofluid on heat transfer in such a configuration. Numerical simulations are performed for pure water and four nanofluids (Cu, CuO, Ag, and Al2O3). The results are analyzed through the thermal and dynamical fields with a particular interest to the skin friction coefficient and Nusselt number evolutions. The average Nusselt number increases with the volume fraction of nanoparticles for the whole tested range of Reynolds number. A correlation of average Nusselt number versus Reynolds number and volume fraction of each type of nanoparticles over the cavity wall is proposed in this paper.  相似文献   

4.
This paper deals with the design of a single glazed flat plate Photovoltaic-Thermal (PV-T) solar collector. First, the thermal and electrical performances of several single glazed flat plate PV-T concepts based on water circulation are investigated, using a simple 2D thermal model, then different ways of improvement are presented. It mainly consists in focusing on the heat transfer between PV cells and fluid, and also on the optical properties of materials. Thus, the most appropriate concept configuration has been identified and suitable material properties have been selected. A prototype collector has been designed, built and tested. A high thermal efficiency was reached at zero reduced temperature. For this level of thermal efficiency, the corresponding electrical efficiency has is lower than efficiency of a standard PV panel using the same technology. However, this solar PV-T collector is reaching, in these standard conditions, the highest efficiency level reported in the literature.  相似文献   

5.
The present work is aimed to study mixed convection heat transfer characteristics within a ventilated square cavity having a heated hollow cylinder. The heated hollow cylinder is placed at the center of the cavity. In addition, the wall of the cavity is assumed to be adiabatic. Flows are imposed through the inlet at the bottom of the left wall and exited at the top of the right wall of the cavity. The present study simulates a practical system such as air-cooled electronic equipment with a heat component or an oven with heater. Emphasis is sited on the influences of the cylinder diameter and the thermal conductivity of the cylinder in the cavity. The consequent mathematical model is governed by the coupled equations of mass, momentum and energy and solved by employing Galerkin weighted residual method of finite element formulation. A wide range of pertinent parameters such as Reynolds number, Richardson number, cylinder diameter and the solid-fluid thermal conductivity ratio are considered in the present study. Various results such as the streamlines, isotherms, heat transfer rates in terms of the average Nusselt number and average fluid temperature in the cavity are presented for different aforesaid parameters. It is observed that the cylinder diameter has significant effect on both the flow and thermal fields but the solid-fluid thermal conductivity ratio has significant effect only on the thermal field.  相似文献   

6.
Slot ventilated enclosure flows have been simulated, respectively in displacement ventilation and mixed ventilation covering from the forced convection dominated flow to the natural convection dominated flow. Direct convection simulation together with the turbulent streamlines and turbulent heatlines demonstrate that the enclosure flow pattern, indoor thermal level and heat transfer potential will depend on the interactions of external forced flow and thermal buoyancy driven flows, i.e., Reynolds number and Grashof number. In subsequent inverse convection modeling, the inverse determination of enclosure wall heat flux profiles was conducted by the use of adjoint methodology, in which the direct, sensitivity and adjoint problems are formulated and solved by finite volume method. The effects of the supplying air flow rate, thermal source strength, ventilation mode, flux functional forms, and the measurement errors on the accuracy of inverse turbulent convection estimation have been investigated. The inverse solutions of turbulent convections are of low level accuracy as the flow becomes thermal-driven turbulent flows, and they deteriorate as the noise levels increase. This work is of fundamental importance for the room air flow design and measurements involving the turbulent thermal convections.  相似文献   

7.
This paper develops an overall methodology for investigating the thermal and power behaviors of semi-transparent single-glazed photovoltaic window for office buildings in Hong Kong. In order to estimate its overall energy performance, this study is conducted in terms of total heat gain, output power and daylight illuminance. Three simulation models are established, including one-dimensional transient heat transfer model, power generation model and indoor daylight illuminance model. A typical office room reference is chosen as case study, and the weather data from 2003 to 2007 from the Hong Kong Observatory are used as the simulation inputs. By incorporating the simulation results, the overall energy performance can be evaluated in terms of electricity benefits corresponding to five orientations of the studied typical office. The priority of office orientation considering overall energy performance is: south-east, south, east, south-west and west. The findings show that thermal performance is the primary consideration of energy saving in the entire system whereas electricity consumption of artificial lighting is the secondary one. The overall annual electricity benefits are about 900 kWh and 1300 kWh for water-cooled and air-cooled air-conditioning systems respectively. The application of semi-transparent PV glazed window can not only produce clean energy, but also reduce building energy use by reducing the cooling load and electrical lighting requirements, which definitely benefits our environmental and economic aspects.  相似文献   

8.
Thermal analysis of a direct-gain room with shape-stabilized PCM plates   总被引:1,自引:0,他引:1  
The thermal performance of a south-facing direct-gain room with shape-stabilized phase change material (SSPCM) plates has been analysed using an enthalpy model. Effects of the following factors on room air temperature are investigated: the thermophysical properties of the SSPCM (melting temperature, heat of fusion and thermal conductivity), inner surface convective heat transfer coefficient, location and thickness of the SSPCM plate, wall structure (external thermal insulation and wallboard material) etc. The results show that: (1) for the present conditions, the optimal melting temperature is about 20 °C and the heat of fusion should not be less than 90 kJ kg−1; (2) it is the inner surface convection, rather than the internal conduction resistance of SSPCM, that limits the latent thermal storage; (3) the effect of PCM plates located at the inner surface of interior wall is superior to that of exterior wall (the south wall); (4) external thermal insulation of the exterior wall obviously influences the operating effect and period of the SSPCM plates and the indoor temperature in winter; (5) the SSPCM plates create a heavyweight response to lightweight constructions with an increase of the minimum room temperature at night by up to 3 °C for the case studied; (6) the SSPCM plates really absorb and store the solar energy during the daytime and discharge it later and improve the indoor thermal comfort degree at nighttime.  相似文献   

9.
The role of advanced isothermal heat storage systems in buildings is discussed. A storage system encapsulated with phase change materials in which energy is absorbed in the hot period and released in the cold period is analyzed. The thermal behaviour of isothermal heat storage composites is examined using numerical techniques.Two methods of heat transfer with latent heat storage are described in the first part. Based on the initial results, the “effective heat capacity” method was selected and implemented into ESP-r. Numerical studies on the effect of isothermal storage of solar energy in specific building material components are discussed in the second part. Numerical simulations were conducted for two cases of multi-zone, highly glazed and naturally ventilated passive solar buildings. PCM-impregnated gypsum plasterboard was used as an internal room lining in the first case study and transparent insulation material combined with PCM was applied for the external south-oriented wall in the second case study. The behaviour of a TIM–PCM wall and its influence on the internal surface temperature are estimated. Air, surface and resultant temperatures are compared with a “no-PCM” case for both case studies and the diurnal and the seasonal latent heat storage effect is analyzed.  相似文献   

10.
A numerical investigation examined the effects on heat transfer of mounting baffles to the upper inclined surfaces of trapezoidal cavities. Two thermal boundary conditions are considered. In the first, the left, short vertical wall is heated while the right, long vertical wall is cooled (buoyancy assisting mode along the upper inclined surface of the cavity). In the second, the right, long vertical wall is heated while the left, short vertical wall is cooled (buoyancy opposing mode along the upper inclined surface of the cavity). For each boundary condition, computations are performed for three baffle heights, two baffle locations, four Rayleigh number values, and three Prandtl number values. Results are displayed in terms of streamlines, isotherms, and local and average Nusselt number values. For both boundary conditions, predictions reveal a decrease in heat transfer in the presence of baffles, with its rate generally increasing with increasing baffle height and Prandtl number. For a given baffle height, a higher decrease in heat transfer is generally obtained with baffles located close to the short vertical wall. Average Nusselt number correlations for both boundary conditions are presented.  相似文献   

11.
A preliminary model for estimating possible thermal energy storage in a phase change shell and tube heat exchanger is presented. Effect of various parameters such as thermal and physical properties of PCM and convective fluid, heat exchanger dimensions and heat transfer fluid flow rates both in laminar and turbulent regime on energy storage times are discussed. The model is illustrated for specific cases.  相似文献   

12.
Molten salt and supercritical carbon dioxide (S-CO_2) are important high temperature heat transfer media,but molten salt/S-CO_2 heat exchanger has been seldom reported.In present paper,heat transfer in printed circuit heat exchanger (PCHE) with molten salt and S-CO_2 is simulated and analyzed.Since S-CO_2 can be drove along passage wall by strong buoyancy force with large density difference,its heat transfer is enhanced by natural convection.In inlet region,natural convection weakens along flow direction with decreasing Richardson number,and the thermal boundary layer becomes thicker,so local heat transfer coefficient of S-CO_2 significantly decreases.In outlet region,turbulent kinetic energy gradually increases,and then heat transfer coefficient increases for turbulent heat transfer enhancement.Compared with transcritical CO_2 with lower inlet temperature,local heat transfer coefficient of S-CO_2 near inlet is lower for smaller Richardson number,while it will be higher for larger turbulent kinetic energy near outlet.Performance of PCHE is mainly determined by the pressure drop in molten salt passage and the heat transfer resistance in S-CO_2 passage.When molten salt passage width increases,molten salt pressure drop significantly decreases,and overall heat transfer coefficient slightly changes,so the comprehensive performance of PCHE is improved.As a result,PCHE unit with three semicircular passages and one semi-elliptic passage has better performance.  相似文献   

13.
A detailed numerical study has been conducted in order to analyse the combined buoyancy effects of thermal and mass diffusion on the turbulent mixed convection tube flows. Numerical results for air-water system are presented under different conditions. A low Reynolds number k-ε turbulent model is used with combined heat and mass transfer analysis in a vertical heated tube. The local heat fluxes, Nusselt and Sherwood numbers are reported to obtain an understanding of the physical phenomena. Predicted results show that a better heat transfer results for a higher gas flow Reynolds number Re, a higher heat flux qw or a lower inlet water flow Γ0. Additionally, the results indicate that the convection of heat by the flowing water film becomes the main mechanism for heat removal from the wall.  相似文献   

14.
主要研究了兼顾火电机组经济性与环保性的负荷优化分配算法,建立了考虑阀点效应的多目标负荷分配模型。应用自主编写的算法,获得了待决策的非支配解集合(Pareto front,PF),其中算法的核心操作是多目标融合、剔除同一层相近个体、保留不同层差异个体。给出了6台机组的负荷优化分配算例,仿真结果验证了模型的合理性,并表明方法可以进一步减少火电机组煤耗成本和污染物排放量。结合逼近理想解排序法(technique for order preference by similarity to an ideel solution,TOPSIS),讨论了不同目标权重下负荷分配方案的区别,证明了基于TOPSIS的多目标负荷分配方案的确定依赖于各自目标在决策中所占的重要程度。  相似文献   

15.
The characteristics of heat transfer in confined multiple jet flows of a micro can combustor is investigated by means of large eddy simulation (LES). The micro combustor can be employed for a hybrid system, which consists of a micro gas turbine and a solid oxide fuel cell. In the present study, the focus is brought into heat transfer, which has a great effect on combustion stability as heat loss to the outside of combustor. The study is made for the three cases of different baffle plate configurations with changing the velocity ratio between fuel and oxidant jets. Downstream of the baffle plate, the flow recirculation regions appear and they can affect the enhancement of the turbulent heat transfer to the wall. In particular, the near-wall flow recirculation region formed between the oxidant jet and the combustor wall plays an important role for wall heat transfer. We study the turbulent thermal fields and conjugate heat transfer which show peculiar characteristics corresponding to the three different baffle plate shapes and different velocity ratios.  相似文献   

16.
The problem of obtaining the wall heat flux in the presence of unsteady heat transfer in two-dimensional, turbulent boundary layer flow is re-examined. A novel expression to produce estimates of the amplitude of the fluctuating wall heat flux has been proposed for the foregoing conditions. This expression is based on flow field measurements instead of measurements in the solid wall substrate, thus allowing us to take the flow dynamics directly into account in the analysis. The fluid effusivity, a measure of the ability of the fluid to exchange thermal energy with its surroundings, was shown to be the dominant parameter controlling the unsteady heat transfer process.  相似文献   

17.
This paper presents a time-dependent periodic heat transfer analysis of a non-air-conditioned building having a south-facing wall of phase-changing component material (PCCM). A rectangular room (6 × 5 × 4 m) based on the ground is considered. The effects of heat transfer through walls and roof, heat conduction to the basement ground and furnishings, heat gain through window and heat loss due to air ventilation have been incorporated in the periodic time-dependent heat transfer analysis. The time-dependent heat flux through the PCCM south-facing wall has been obtained by defining the effective thermal properties of the PCCM for a conduction process with no phase change. Numerical calculations are made for a typical mild winter day (7 March 1979) at New Delhi for heat flux entering through the wall and inside air temperature. Further, a PCCM wall of smaller thickness is more desirable, in comparison to an ordinary masonry concrete wall, for providing efficient thermal energy storage as well as excellent thermal comfort in buildings.  相似文献   

18.
The interaction of surface radiation with laminar and turbulent natural convection in differentially heated vertical cavities, filled with air and of large aspect ratio (greater than 10), is analyzed in this study. The k ? ωSST turbulence model is used for the formulation of the convection fluid flow and heat transfer, while the governing equations are discretized by the finite-volume method. As an extension of the scarce previous studies, more realistic conditions with a wide range of parameters are considered in the performed simulations. The presented results show the effect of surface radiation on streamlines, isotherms, turbulent kinetic energy, and temperature and vertical velocity profiles, as well as on local and on average convective and radiative heat transfer. Globally, it is found that surface radiation has a weak effect on the dynamic and thermal fields in the major part of the cavity; however, some influence in the upper and lower zones of the cavity is observed. For design purposes, accurate correlations are developed for average convective and radiative Nusselt numbers that cover emissivity of surfaces between 0 and 1, cold wall temperature ranging from 263 K to 303 K, temperature difference between vertical walls ranging from 5 K to 40 K, width of the cavity between 2.5 cm and 7.5 cm, and height of the cavity between 0.25 m and 6 m (this leads to a Rayleigh number ranging from 103 to 2 × 106 and an aspect ratio between 10 and 80).  相似文献   

19.
A numerical simulation has been carried out to investigate the heat transfer enhancement in a shell-and-tube heat exchanger using a porous medium inside its shell and tubes, separately. A three-dimensional geometry with k-? turbulent model is used to predict the heat transfer and pressure drop characteristics of the flow. The effects of porosity and dimensions of these media on the heat exchanger's thermal performance and pressure drop are analyzed. Inside the shell, the entire tube bundle is wrapped by the porous medium, whereas inside the tubes the porous media are located in two different ways: (1) at the center of the tubes, and (2) attached to the inner wall of the tubes. The results showed that this method can improve the heat transfer at the expense of higher pressure drop. Evaluating the method showed that using porous media inside the shell, with particular dimension and porosity can increase the heat transfer rate better than pressure drop. Using this method inside the tubes leads to two diverse results: In the first configuration, pressure loss prevails over the heat transfer augmentation and it causes energy loss, whereas in the second configuration a great performance enhancement is observed.  相似文献   

20.
A numerical study has been conducted to examine the effects on heat transfer of mounting two offset baffles onto the upper inclined and lower horizontal surfaces of trapezoidal cavities. Two thermal boundary conditions are considered. In the first, the short left vertical wall is heated while the long right vertical wall is cooled (buoyancy-assisting mode along the upper inclined surface of the cavity). In the second, the long right vertical wall is heated while the short left vertical wall is cooled (buoyancy-opposing mode along the upper inclined surface of the cavity). For both boundary conditions, computations are performed for several offset baffle heights, four Rayleigh number (Ra) values, three Prandtl number (Pr) values, and two baffle positions (Position I and Position II). In Position I, the lower baffle is offset toward the short vertical wall and the upper baffle is offset toward the long vertical wall of the enclosure, whereas in Position II, the lower and upper baffles are offset toward the long and short vertical walls, respectively. Results reveal a decrease in heat transfer in the presence of baffles, with the rate generally increasing with increased baffle height and Pr. At a given baffle height and Ra, Nussett number (Nu) values are lower in the buoyancy-opposing mode. For both boundary conditions, the highest decrease is achieved in fully partitioned enclosures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号