首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
为了研究扇形孔不同复合扩张角对平板气膜冷却的影响,分别对10°、12°、14°、16°4种复合扩张角的气膜孔的流动和传热特性进行了数值模拟。研究结果表明,4种气膜孔复合扩张角孔型出口下游均出现从中心向上抬升的反向旋转涡对,将主流燃气卷吸进来;较大的复合扩张角孔型使得气膜出流在侧向覆盖相对更宽,可以有效地降低壁面温度;在相同吹风比下(M=0.75~1.75),12°复合扩张角孔型在气膜出流方向(40D范围区域)的平均绝热冷却效率明显要高于其他3种孔;吹风比M=1时,冷气出流复合扩张角增大的同时,冷却效率η≥0.3的覆盖面从X/D≈40减小到X/D≈8。同时,针对侧向扩张12°的7种不同后倾角的扇形孔进行了研究,发现其后倾角(范围10°~14°)的变化对冷却效率有一定的增强作用。研究成果可为燃气轮机透平叶片表面气膜孔的设计及升级改进提供参考。  相似文献   

2.
基于有限体积法对三维定常不可压缩N-S方程进行离散,采用分区域非结构化网格及两层k-ε湍流模型,在吹风比M为0.4、0.8和1.6的情况下,数值研究了孔间距(P/D=3.0、3.5、4.0)对缩放槽缝孔气膜冷却效率的影响,对不同孔间距气膜冷却整体效果进行了对比分析。结果表明:孔间距较小时,在孔口附近及孔间区域发生强烈的气膜干扰,冷却气膜分布比较集中,在孔口下游近处冷却效率较高;随着孔间距的增大,气膜覆盖面积增加,孔口附近的冷却效率低于小孔距,各个孔沿展向的冷却效率也有所降低,在孔下游远处发生的气膜干涉较为明显;在低吹风比时,孔间距较小气膜孔的冷却效果最好,在高吹风比时,孔间距较大气膜孔对壁面的冷却效果与低吹风比相比有大幅度的改善。  相似文献   

3.
《动力工程学报》2016,(9):704-710
基于高温风洞实验台,采用红外热成像技术和机械振动机构对振动平板单孔气膜冷却特性进行了实验研究.测量吹风比在0.4~1.8范围内,静态以及振动状态下的气膜冷却效果,并分析了振幅(0~5mm)和频率(0~20Hz)等因素对气膜冷却效果的影响.结果表明:振动会削弱气膜冷却效果;与频率相比,振幅对气膜冷却效果的影响更大;随着吹风比的增大,同一振动对气膜冷却效果的影响变小;频率不同的振动对气膜冷却效果的影响相近,在X/D=5~10内,平均有效温比降低约3%;振幅不同的振动对气膜冷却效果的影响是相近的,在X/D=5~10内,平均有效温比降低约5%.  相似文献   

4.
采用高精度红外热像仪测量了平板绝热气膜冷却效率,比较了双叉排孔和单排孔气膜冷却效率,分析了吹风比(M=0.65,1.0,1.5)和脉动频率(St=0,0.01,0.015,0.025)以及孔间作用对气膜冷却效率的影响,结合数值计算得到的瞬态流场和温度场分析了脉动射流气膜冷却下的流动传热机理。结果表明:在稳态射流工况下,单排孔的气膜冷却效率随着吹风比的增加而减小,双叉排孔的气膜冷却效率却随着吹风比的增加而增大;在脉动射流时,单排和双叉排孔的气膜冷却效率在低吹风比下低于稳态射流,在高吹风比下,脉动射流对气膜冷却效率的影响减小,且低频脉动射流气膜冷却效率略高于稳态射流。  相似文献   

5.
为了探究多种异形孔在叶片上不同位置对气膜冷却改进效果的影响,通过红外测温技术对圆柱孔、水滴孔、圆锥孔和燕尾孔的气膜冷却效率进行了试验研究。结果表明:与圆柱孔相比较,位于压力面尾缘处的水滴孔增加了气膜覆盖长度,减小了气膜冷却效率沿着流向的衰减,3种吹风比(1.0,1.5和2.0)下气膜冷却效率增幅为45%~78%;位于压力面前缘处的圆锥孔增加了气膜在展向的覆盖宽度,对气膜覆盖长度的改善并不理想,吹风比越大气膜冷却效率提升越大,3种吹风比下气膜冷却效率增幅为37.9%~96.4%;位于吸力面鳃区的燕尾孔对气膜冷却效率的改进效果最明显,吹风比增大气膜的覆盖长度增加,3种吹风比下气膜冷却效率增幅为102.2%~302.2%。  相似文献   

6.
新型缩放槽缝孔气膜冷却效率的数值研究   总被引:1,自引:1,他引:0  
基于控制容积法对三维定常不可压缩N-S方程进行离散,采用分区域非结构化网格及两层k-ε湍流模型,在吹风比M=0.6~1.5的情况下,对新型缩放槽缝形气膜孔进行了详细的平板气膜冷却数值汁算,得到了在喷孔射流下游处及叶高方向上的气膜冷却效率,并研究了其孔长与孔径比L/D对冷却效率的影响.计算结果表明:高吹风比对缩放槽缝孔沿中心线冷却效率的影响较为复杂;缩放槽缝形气膜孔下游的冷却效率并不随吹风比的变化而单调变化,而是在吹风比为1.0时存在最佳值;在孔口下游较远区域,两个相邻孔之间沿叶高方向的气膜覆盖性较好;缩放槽缝孔的冷却效率随着其孔长与孔径比L/D的增大而增大,当L/D>8时,增加的幅度趋缓.  相似文献   

7.
对平板在振动状态下的气膜冷却进行数值研究,比较在不同振动条件下吹风比为1时气膜孔下游中心线上绝热壁面的冷却绝热效率,同时分析了气膜孔下游壁面在不同振动条件下的静压及静压随相位角的变化。结果显示:振动会使平板气膜冷却效果恶化,在不同振动条件下振动时绝热壁面的冷却绝热效率均比稳态时低,在x/d7时,不同振动频率下的冷却绝热效率相差较大,且频率越大冷却绝热效率越小,不同振幅下的冷却绝热效率相差较小。振动时气膜孔下游上下壁面静压呈周期性变化。靠近气膜孔截面贴壁区域各相位下均存在明显的二次流,在x/d=5和x/d=10截面内,y/d4范围内各相位均存在速度峰值,90°和180°速度峰值大于稳态时速度,0°和270°速度峰值小于稳态时速度。  相似文献   

8.
基于有限体积法对三维定常不可压缩N-S方程进行离散,采用两层k-ε湍流模型,在吹风比M为0.5、1.0、1.5、2.0的情况下,数值研究了长径比(L/D=2、4、8和10)对缩放槽缝孔气膜冷却效果的影响,对不同长径比气膜冷却整体效果进行了对比分析。结果表明:在任何吹风比下,缩放槽缝孔的冷却效率都随着孔长与孔径比的增大而增大,特别是在长径比由2变为4时,冷却效率有大幅度的提高,当L/D8时,增加的幅度趋缓;对于同一长径比,孔与孔之间沿展向的冷却效率均有不同程度的增加,小吹风比时增加的幅度小,随着吹风比的增大,冷却效率增加的幅度也随之增大;在短孔的气膜孔下方生成了强度较强和尺度较大的反向涡旋对,在长孔的气膜孔下方所生成的反向涡旋对与短孔相比尺度较小、强度较弱,冷气流动的分离现象消失,流动较规则,冷却效率较高。  相似文献   

9.
在不同吹风比下,对新型缩放槽缝孔和新型月牙孔气膜冷却结构的流动过程和气膜冷却效率进行了数值研究,并与常规圆柱孔进行了对比,以揭示新型孔改善气膜冷却效果的机理。在所研究吹风比的范围内,两种新型孔的冷却效果都好于圆柱孔,且其冷却效率曲线上移的幅度与吹风比成正比关系。高吹风比时,缩放槽缝孔在气膜孔下游中心线x方向上的冷却效率曲线和两个气膜孔之间z方向上的横向冷却效率曲线上移显著。通过优化气膜孔的结构,新月牙形孔可以有效降低反向涡对的强度,从而削弱了气膜对主流的穿透力,气膜冷却较好。新型缩放槽缝孔在绝热壁面上形成了一对与反向涡对不同的耦合涡,这对耦合涡使气膜的贴壁效果更好,提高了气膜孔的冷却效率。  相似文献   

10.
为研究平板的气膜冷却特性,应用红外测温技术,在高温风洞试验台上对圆柱形单孔平板模型进行实验研究.采用数字图像运算技术,直接获得冷却前后平板模型的二维温度差分布.分析了在200℃时不同吹风比对平板气膜冷却效率的影响.实验结果表明:0.47<M<0.94时,M增大,冷却效率提高;0.94<M<2.24时,由于主射流掺混严重...  相似文献   

11.
To improve the film cooling performance by shaped injection holes for the turbine blade leading edge region, we have investigated the flow characteristics of the turbine blade leading edge film cooling using five different cylindrical body models with various injection holes, which are a baseline cylindrical hole, two laidback (spanwise-diffused) holes, and two tear-drop shaped (spanwise- and streamwise-diffused) holes, respectively. Mainstream Reynolds number based on the cylinder diameter was 7.1 × 104 and the mainstream turbulence intensities were about 0.2%. The effect of injectant flow rates was studied for various blowing ratios of 0.7, 1.0, 1.3 and 1.7, respectively. The density ratio in the present study is nominally equal to one. Detailed temperature distributions of the cylindrical body surfaces are visualized by means of an infrared thermography (IRT). Results show that the conventional cylindrical holes have poor film cooling performance compared to the shaped holes. Particularly, it can be concluded that the laidback hole (Shape D) provides better film cooling performance than the other holes and the broader region of high effectiveness is formed with fairly uniform distribution.  相似文献   

12.
The aim of the present study is conducting the numerical approach to a combination of internal jet impingement and external film cooling over a flat plate. A multi-block three-dimensional Navier-Stokes code, CFX 4.4, with k-e turbulence model is used to simulate this complicated thermal-flow structure induced by the interaction of coolant jet and hot cross mainstream. By assuming the adiabatic wall boundary condition on the tested film-cooled plate, both the local and the spanwise-averaged adiabatic film cooling effectiveness are evaluated for comparison of the cooling performance at blowing ratios of Br=0.5, 1.0, and 1.5. Film flow data were obtained from a row of five cylindrical film cooling holes, inclined in angle of 35?and 0?in direction of streamwise and spanwise, respectively. The film cooling hole spacing between adjacent holes is 15 mm for all the holes. Before the coolant flow being injected through individual cooling hole then encountered with the mainstream, an impingement chamber containing an impingement plate with 43 holes is located on the path of coolant flow. Present study also focused on the effect of impingement spacing, 10mm, 20mm, and 30mm. Compare the results, we find the impingement jet has a significant effect on the adiabatic film cooling effectiveness. As the coolant impingement spacing is fixed, results indicated that higher blowing ratio would enhance the local and the spanwise-averaged adiabatic film cooling effectiveness. Moreover, neither uniform nor parabolic distribution of pressure distribution are observed within the coolant hole-pipe.  相似文献   

13.
Numerical approach have been conducted on a flat, three-dimensional discrete-hole film cooling geometries that included the mainflow, injection tubes, impingement chamber, and supply plenum regions. The effects of blowing ratio and hole’s shape on the distributions of flow field and adiabatic film cooling effectiveness over a flat plate collocated with two rows of injection holes in staggered-hole arrangement were studied. The blowing ratio was varied from 0.3 to 1.5, while the density ratio of the coolant to mainstream is kept at 1.14. The geometrical shapes of the vent of the cooling holes are cylindrical round, simple angle (CYSA), forward-diffused, simple angle (FDSA) and laterally diffused, simple angle (LDSA). Diameter of different shape of cooling holes in entrance surface are 5.0 mm and the injection angle with the main stream in streamwise and spanwise are 35° and 0° respectively. Ratio of the length of the cooling holes and the diameter in the entrance surface is 3.5. The distance between the holes in the same row as well as to the next row is three times the diameter of hole in the entrance surface.The governing equation is the fully elliptic, three-dimensional Reynolds-averaged Navier–Stokes equations. The mesh used in the finite-volume numerical computation is the multi-block and body-fitted grid system. The simulated streamwise distribution of spanwise-averaged film cooling effectiveness exhibited that low Reynolds number kε model can give close fit to the experimental data of the previous investigators. Present study reveals that (1) the geometrical shape of the cooling holes has great effect on the adiabatic film cooling efficiency especially in the area near to the cooling holes. (2) The thermal-flow field over the surface of the film-cooled tested plate dominated by strength of the counter-rotating vortex pairs (CRVP) that generated by the interaction of individual cooling jet and the mainstream. For LDSA shape of hole, the CRVP are almost disappeared. The LDSA shape has shown a highest value in distribution of spanwise-averaged film cooling effectiveness when the blowing ratio increased to 1.5. It is due to the structure of the LDSA is capable of reducing the momentum of the cooling flow at the vent of the cooling holes, thus reduced the penetration of the main stream. (3) The structure of the LDSA can also increase the lateral spread of the cooling flow, thus improves the spanwise-averaged film cooled efficiency.  相似文献   

14.
Experimental investigations are carried out to analyze the effect of coolant injector configuration on overall film cooling performance in a cylindrical test section similar to a rocket combustion chamber. Three different injector orientations are investigated: (i) holes parallel to core gas flow, (ii) holes at a tangential angle to the core gas flow, and (iii) compound angle holes inclined to the wall both in the tangential and azimuthal direction. The objective is to provide a consistent set of measurements for cooling effectiveness within the same test facility with respect to different blowing ratios ranging from 1.69 to 3.9. The results suggest that coolant injection parallel to the axis should be used in situations where far field effectiveness is of concern. The tangential injection, in general, shows lower wall protection compared to other schemes. The results show that the compound angle configuration augments film cooling effectiveness in the near injection regimes. However comparison of the effectiveness values for the compound injectors suggests the existence of an optimum compound angle configuration. The circumferential wall temperature data represent systematic changes in the coolant flow behavior with the change from straight injection to compound angle injection.  相似文献   

15.
In this article, film cooling effectiveness was performed numerically using an inclined hole that injected a cooled air cross wavy plate in streamwise direction. The numerical investigation was performed using ANSYS-CFX software with adoption of shear stress transport kω model as turbulence closure. The coolant was supplied by a single film cooling hole with an inclination angle of 35°. The number of waves in cross spanwise direction was varied from 2 to 10 using number steps equal to 2. The numerical results were validated using experimental data. Two different configurations of the cooling holes are considered; one when the hole is situated on the crest of the wave, the other one when the hole is on the trough wave. Simulations are performed only for low blowing ratio of 0.5. It is found that for both configurations of cooling, holes increase when wave’s number increases gradually the effectiveness of film cooling. The crest position of cooling hole is more performed than trough position. Moreover, the representative velocity vectors and temperature contours are presented to interpret flow and thermal transport visualization.  相似文献   

16.
Abstract

Film cooling with primary and secondary hole injection is numerically investigated. Effects of primary hole shape and secondary hole injection angle are documented. Each primary hole, either cylindrical or laterally diffused, has two secondary, cylindrical holes located symmetrically about it. Adding secondary holes improves cooling performance. Five cases of different secondary hole injection configuration are analyzed. With a cylindrical primary hole, increasing secondary hole inclination angle provides better cooling; outwardly inclining the secondary holes shows continued improvement. With horn-shaped primary holes, smaller secondary hole inclination angles provide higher cooling at lower blowing ratios; larger secondary hole inclination angles provide higher cooling at higher blowing ratios, and compound-angle secondary hole injection shows no improvement over parallel hole injection.  相似文献   

17.
通过数值模拟研究了双孔平板的气膜冷却效率随吹风比和不同孔型的变化情况。其中孔型分别为圆柱孔、扩张孔和复合孔,它们的射流角均为30°,扩张孔的扩张角为1.79°,复合孔是由圆柱孔和扩张孔结合而得到的新型孔。利用CFD软件对模型进行数值模拟,采用单排双孔模型。对比分析了圆柱孔、扩张孔和复合孔的冷却情况。  相似文献   

18.
Experimental investigation has been performed to study the film cooling performances of cylindrical holes and laid-back holes on the turbine blade leading edge. Four test models are measured for four blowing ratios to investigate the influences of film hole shape and hole pitch on the film cooling performances Film cooling effectiveness and heat transfer coefficient have been obtained using a transient heat transfer measurement technique with double thermochromic liquid crystals. As the blowing ratio increases, the trajectory of jets deviates to the spanwise direction and lifts off gradually. However, more area can benefit from the film protection under large blowing ratio, while the is also higher. The basic distribution features of heat transfer coefficients are similar for all the four models. Heat transfer coefficient in the region where the jet core flows through is relatively lower, while in the jet edge region is relatively higher. For the models with small hole pitch, the laid-back holes only give better film coverage performance than the cylindrical holes under large blowing ratio. For the models with large hole pitch, the advantage of laid-back holes in film cooling effectiveness is more obvious in the upstream region relative to the cylindrical holes. For the cylindrical hole model and the laid-back hole model with the same hole pitch, heat transfer coefficients are nearly the same with each other under the same blowing ratios. Compared with the models with large hole pitch, the laterally averaged film cooling effectiveness and heat transfer coefficient are larger for the models with small hole pitch because of larger proportion of film covering area and strong heat transfer region.  相似文献   

19.
运用数值模拟的手段,从流动特性和冷却特性两方面评价了各种开槽气膜冷却孔结构的优劣。从流动的机理揭示了在相同的槽深下,不同的横槽结构对改善气膜冷却效率和流量系数的影响,并比较了在气膜孔出口和入口均开有横槽后对流动和冷却特性的影响。结果表明:开横槽后,气膜孔出口下游的冷却效率得到不同程度的改善,吹风比越大,改善的程度越明显。在横槽下游5D-10D的范围内,冷却效率的改善程度最大;在气膜孔出入口处均开有斜横槽的结构和用圆角过渡气膜孔入口处的横槽均是提高气膜冷却效率和减小气膜孔流动阻力的有效措施,而在气膜孔出口处的横槽用圆角过渡则不利于改善气膜冷却效果。  相似文献   

20.
In the present paper, a numerical investigation is conducted on film cooling performance from novel sister-shaped single-hole schemes. Based on the sister hole film cooling technique, shaped holes are formed by merging discrete sister holes to a primary hole. Simulations are performed at four blowing ratios of 0.25, 0.5, 1, and 1.5. The novel-shaped holes resulted in a significant reduction in the jet liftoff effect in comparison with a cylindrical and a forward-diffused shaped hole. Moreover, film cooling effectiveness is notably increased at the high blowing ratios of 1 and 1.5.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号