首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 329 毫秒
1.
The front-row shading reduction coefficient is a key parameter used to calculate the system efficiency of a photovoltaic (PV) power station. Based on the Hay anisotropic sky scattering model, the variation rule of solar radiation intensity on the surface of the PV array during the shaded period is simulated, combined with the voltage–current characteristics of the PV modules, and the shadow occlusion operating mode of the PV array is modeled. A method for calculating the loss coefficient of front shadow occlusion based on the division of the PV cell string unit and Hay anisotropic sky scattering model is proposed. This algorithm can accurately evaluate the degree of influence of the PV array layout, wiring mode, array spacing, PV module specifications, and solar radiation on PV power station system efficiency. It provides a basis for optimizing the PV array layout, reducing system loss, and improving PV system efficiency.  相似文献   

2.
局部阴影条件下光伏模组特性的建模与分析   总被引:5,自引:1,他引:4  
以考虑了反向雪崩击穿的光伏电池元的双二极管电路模型为基础,建立了适用于阴影效应分析的光伏模组的数学仿真模型,分析了光伏模组在局部阴影条件下I-V和P-V特性及输出能力的变化,提出了增强光伏模组抗阴影能力的方法.  相似文献   

3.
在光伏发电系统中,阴影的遮挡会造成光伏发电系统输出功率及发电量的降低,电源优化器的分散式板载直流电源管理技术能够在一定程度上减少这种损失。本文对顺德中山大学太阳能研究院4个装机容量均为1.01 kWp的光伏并网发电系统进行电源优化器的阴影遮挡对比实验,结果表明,光伏阵列在明显阴影遮挡情况下,安装电源优化器的系统发电量较一般系统高50.7%;在阴影遮挡的大部分时间段内,安装电源优化器系统的实时输出功率较一般系统高出50%以上,优化效果明显。本文的实例分析结果对一些不可避免阴影遮挡的光伏发电系统的设计及安装具有一定的参考价值。  相似文献   

4.
Solar photo voltaic array (SPVA) generates a smaller amount of power than the standard rating of the panel due to the partial shading effect. Since the modules of the arrays receive different solar irradiations, the P-V characteristics of photovoltaic (PV) arrays contain multiple peaks or local peaks. This paper presents an innovative method (magic square) in order to increase the generated power by configuring the modules of a shaded photovoltaic array. In this approach, the physical location of the modules in the total cross tied (TCT) connected in the solar PV array is rearranged based on the magic square arrangement pattern. This connection is done without altering any electrical configurations of the modules in the PV array. This method can distribute the shading effect over the entire PVarray, without concentrating on any row of modules and can achieve global peaks. For different types of shading patterns, the output power of the solar PV array with the proposed magic square configuration is compared with the traditional configurations and the performance is calculated. This paper presents a new reconfiguration technique for solar PV arrays, which increases the PV power under different shading conditions. The proposed technique facilitates the distribution of the effect of shading over the entire array, thereby, reducing the mismatch losses caused by partial shading. The theoretical calculations are tested through simulations in Matlab/ Simulink to validate the results. A comparison of power loss for different types of topologies under different types of shading patterns for a 4×4 array is also explained.  相似文献   

5.
D. Picault  B. Raison 《Solar Energy》2010,84(7):1301-1309
The development of photovoltaic (PV) energy throughout the world this last decade has brought to light the presence of module mismatch losses in most PV applications. Such power losses, mainly occasioned by partial shading of arrays and differences in PV modules, can be reduced by changing module interconnections of a solar array. This paper presents a novel method to forecast existing PV array production in diverse environmental conditions. In this approach, field measurement data is used to identify module parameters once and for all. The proposed method simulates PV arrays with adaptable module interconnection schemes in order to reduce mismatch losses. The model has been validated by experimental results taken on a 2.2 kWp plant, with three different interconnection schemes, which show reliable power production forecast precision in both partially shaded and normal operating conditions. Field measurements show interest in using alternative plant configurations in PV systems for decreasing module mismatch losses.  相似文献   

6.
Maximum Power Point Tracking (MPPT) controller is required in a solar photovoltaic (PV) system to deliver the maximum power to load from PV module. This paper proposes a novel stepped MPPT method to realize a simple MPPT controller, which can track the real maximum power point (RMPP) even under partial shading conditions. The proposed algorithm is started by scanning the characteristic curve of the PV modules to detect the global maximum power point and then the algorithm will be switched to the conventional P&O algorithm to track the true maximum power point. The obtained simulation results, using Power electronic simulation software (PSIM), are compared with those found using the P&O method to confirm the performance of our proposed MPPT method even under non-uniform solar irradiation.  相似文献   

7.
基于S-V特性分析的晶硅光伏组件阴影遮障诊断   总被引:1,自引:0,他引:1       下载免费PDF全文
针对广泛使用的晶硅光伏组件,通过Simulink建立太阳电池双二极管精确仿真模型,对实际应用中最常见的光伏组件阴影遮挡故障进行多种工况的仿真验证。根据I-V曲线拐点、台阶、曲线下积分面积(S)下降的特征,提出一种基于S-V曲线特性的光伏组件阴影遮挡故障的在线诊断方法。该方法建立S-V曲线,根据S-V曲线分叉点位置可判断光伏组件遮挡情况,通过整体积分面积进而判断遮挡比例。对温度、辐照度进行折算,使该方法在全工况下适用。结合光伏组件功率优化器验证该诊断方法有较高的准确率,并且可准确地判断阴影遮挡面积,具有很高的实际应用价值。  相似文献   

8.
The one of main causes of reducing energy yield of photovoltaic systems is partially shaded conditions. Although the conventional maximum power point tracking (MPPT) control algorithms operate well under uniform insolation, they do not operate well in non-uniform insolation. The non-uniform conditions cause multiple local maximum power points on the power?voltage curve. The conventional MPPT methods cannot distinguish between the global and local peaks. Since the global maximum power point (MPP) may change within a large voltage window and also its position depends on shading patterns, it is very difficult to recognise the global operating point under partially shaded conditions. In this paper, a novel MPPT system is proposed for partially shaded PV array using artificial neural network (ANN) and fuzzy logic with polar information controller. The ANN with three layer feed-forward is trained once for several partially shaded conditions to determine the global MPP voltage. The fuzzy logic with polar information controller uses the global MPP voltage as a reference voltage to generate the required control signal for the power converter. Another objective of this study is to determine the estimated maximum power and energy generation of PV system through the same ANN structure. The effectiveness of the proposed method is demonstrated under the experimental real-time simulation technique based dSPACE real-time interface system for different interconnected PV arrays such as series-parallel, bridge link and total cross tied configurations.  相似文献   

9.
In this paper, a battery-integrated boost converter utilizing the distributed maximum power point tracking (DMPPT) configuration for a photovoltaic (PV) system is studied. Each PV module has its own battery and DC/DC converter. Due to the proposed topology and use of battery, the MPPT function is not affected by the load demand and input power from PV. Application of the proposed converter to DMPPT configuration can save the voltage amplification stage and maintain PV voltage during partial shading. Steady-state analysis of the converter to determine the power flow equations is presented. Comparison with the series-connected conventional boost converter is reported in this paper. Simulation and experiment results of a laboratory prototype are presented to verify the effectiveness of the proposed approach. System design considerations are also discussed.  相似文献   

10.
提出了一种计算阴影遮挡情况下组件输出特性的方法。该方法首先根据流经组件的电流对被遮挡电池及其所在电池串的输出特性进行分析,在此基础上对旁路二极管的伏安特性进行理论分析,进而判定旁路二极管导通状态,从而计算出光伏组件在阴影遮挡情况下的多峰特性。经试验验证,此种方法可精确地模拟复杂遮挡情况下光伏组件的输出特性,对于各种阴影遮挡情况下的峰值点的最大误差在3%以内。该方法较传统的失配情况下基于一个电池单元并联一个保护旁路二极管的计算方法更符合实际,具有较强的实用价值。  相似文献   

11.
This work presents a Maximum Power Point Tracking (MPPT) based on analyzing the output characteristics of PV array under uniform irradiance and partial shading conditions. In order to carry out MPPT in PV panels, under partial shading conditions a method based on Extremum Seeking Control (ESC) is introduced. In contrast with classic ESC, in this method the double of dithering signal frequency is not used, consequently PV output power has a ripple of a lower frequency. Also the drop which occurs when MPPT system starts to operate in classic ESC method is minimized in this paper. The ESC approach for MPPT in this paper uses a series combination of a Low Pass Filter (LPF) and a High Pass Filter (HPF). These two filters act as a Band Pass Filter (BPF) and let a specific frequency of input power which includes the derivative of PV with respect to its voltage pass through. Finally, the system does not operate in local optimal points for efficient point will be global. The algorithm adds partial shadow judging conditions in ESC method. The system runs the variable step ESC method to realize MPPT when photovoltaic array is under uniform irradiance. Under Partial Shading Condition (PSC), the control method can eliminate the interference of local maximum power point (MPP) to make 23 the PV array running at global MPP. In addition, unlike other methods, the proposed MPPT operates on the global MPPs. The proposed MPP tracker does not add any extra complexity compared to the classical ones. However, it increases significantly the efficiency of the PV installation under PSC. We will show that under uniform irradiance, the proposed MPPT leads to faster performances than classical approaches.  相似文献   

12.
A module integrated converter (MIC) for a photovoltaic (PV) cell is important part of power conditioning system (PCS). It performs maximum power point tracking of a PV cell to generate the power as much as possible from solar energy. There are several methods for connection between the PV modules and the MICs. In order to avoid partial shading effects, converter-per-module approach was proposed. The MIC that performs maximum power point tracking (MPPT), if it is low efficiency, is no use. The MIC whose output is connected to the output of PV module was proposed for high efficiency. However, there are some problems. In this study, an asymmetrical half-bridge flyback converter is proposed instead of the original flyback converter with same method to solve the problems. The proposed MIC was built to verify the performance. The new topology using soft switching technique showed good performance for the efficiency. At the higher power, the efficiency of the proposed converter is higher than existing converter.  相似文献   

13.
为解决真实场景中光伏组件局部阴影区域分割受环境干扰的问题,该文提出基于图像处理的光伏局部阴影区域分割方法。根据光伏组件特征用改进的阈值分割方法提取组件边框,采用Hough变换检测组件边框线段,计算包围边框线段端点的最小凸包作为感兴趣区域。在感兴趣区域内再次使用改进的阈值分割方法提取局部阴影区域。用模拟仿真图像和真实场景图像验证该文所提方法的有效性,实验结果表明:所提方法可准确分割出光伏组件上的局部阴影区域且保持了遮挡区域的细节信息。与多阈值分割方法和基于Canny边缘检测的分割方法相比,该文所提方法的错误分类误差更小,类别像素准确率更高。  相似文献   

14.
Yaw-Juen Wang  Po-Chun Hsu   《Energy》2011,36(5):3069-3078
Partial shading is a commonly encountered issue in a PV (photovoltaic) system. In this paper, five different connection configurations of PV cells are studied to compare their performance under the condition of partial shading. They are SS (simple series), SP (series-parallel), TCT (total-cross-tied), BL (bridge-linked) and HC (honey comb) configurations. The electric network of each connection configuration is analyzed, taking into account the nonlinear nature of PV cells, by writing the Kirchhoff’s voltage and current equations. The analysis is followed by solving the simultaneous nonlinear equations using the Newton-Raphson algorithm, which allows the I-V (current-voltage) characteristic of the module with a specific configuration in response to different types and levels of partial shading to be evaluated. Comparison of the maximum power and fill factors of the five connection configurations is then carried out. Also studied is the reverse voltage across each PV cell. It is found that in most cases, the TCT configuration has a superior performance over the other four configurations in most comparison indices.  相似文献   

15.
This paper explains the development of a new algorithm for maximum power point tracking (MPPT) in large PV systems under partial shading conditions (PSC). The new algorithm combines the use of particle swarm optimization (PSO) for MPPT during the initial stages of tracking and then employs the traditional perturb and observe (PO) method at the final stages. The methodology has been first simulated in two different PV configurations under varying shading patterns and experimentally verified using a microcontroller based experimental system. The integration of swarm intelligence with PO algorithm is shown to yield faster convergence to the global maximum power point (GMPP) than when the two methods are individually used. The oscillations in the output power, voltage and current of the PV system with the proposed method are the least when compared to the ones obtained during PSO based MPPT.  相似文献   

16.
针对以常规方式安装双面光伏组件时组件背面存在一定遮挡会影响其发电量这一情况,通过对双面光伏组件分别安装于固定式光伏支架、平单轴跟踪光伏支架时组件背面有、无遮挡,以及背景反射率不同时双面光伏组件的发电量情况进行分析,结果发现,在双面光伏组件背面无遮挡的前提下,当采用平单轴跟踪光伏支架且地面背景为白色时,双面光伏组件的发电量增益明显。该研究可为地面光伏电站、农光互补光伏电站及分布式光伏电站中双面光伏组件的安装方式提供理论支持。  相似文献   

17.
对光伏电站自动化布置的区域填充算法以及进行阴影分析的射线检测算法进行研究,进而以BIM技术为基础在Sketchup平台上实现光伏组件自动参数化布置及逐时阴影遮挡分析功能,并和实际电站的性能进行比较。研究结果表明:自动化布置算法和阴影分析算法符合电站实际应用情况,相对于传统的光伏电站性能模拟方法可视化性能有明显提升,此外基于实测气象数据模拟电站全年发电量和实测发电量的差异约为1.5%,具有一定精度。  相似文献   

18.
Photovoltaic (PV) systems are adversely affected by partial shading and non-uniform conditions. Meanwhile, the addition of a bypass shunt diode to each PV module prevents hotspots. It also produces numerous peaks in the PV array’s power-voltage characteristics, thereby trapping conventional maximum power point tracking (MPPT) methods in local peaks. Swarm optimization approaches can be used to address this issue. However, these strategies have an unreasonably long convergence time. The Grey Wolf Optimizer (GWO) is a fast and more dependable optimization algorithm. This renders it a good option for MPPT of PV systems operating in varying partial shading. The conventional GWO method involves a long conversion time, large steady-state oscillations, and a high failure rate. This work attempts to address these issues by combining Cuckoo Search (CS) with the GWO algorithm to improve the MPPT performance. The results of this approach are compared with those of conventional MPPT according to GWO and MPPT methods based on perturb and observe (P&O). A comparative analysis reveals that under non-uniform operating conditions, the hybrid GWO CS (GWOCS) approach presented in this article outperforms the GWO and P&O approaches.  相似文献   

19.
Micro-cracks in wafer based silicon solar cell modules are nowadays identified by a human observer with the electroluminescence (EL) method. However, the essential question of how the micro-cracks affect the PV module performance has yet to be answered. We experimentally analyze the direct impact of micro-cracks on the module power and the consequences after artificial aging. We show that the immediate effect of micro-cracks on the module power is small, whereas the presence of micro-cracks is potentially crucial for the performance of the module after artificial ageing. This confirms the necessity to develop the means of quantifying the risk of power loss in PV modules with cracked solar cells in their lifetime, in order to enable manufacturers to discard defective modules with high risk of failure while keeping modules with uncritical micro-cracks. As a first step towards risk estimation we develop an upper bound for the potential power loss of PV modules due to micro-cracks in the solar cells. This is done by simulating the impact of inactive solar cell fragments on the power of a common PV module type and PV array. We show that the largest inactive cell area of a double string protected by a bypass diode is most relevant for the power loss of the PV module. A solar cell with micro-cracks, which separate a part of less than 8% of the cell area, results in no power loss in a PV module or a PV module array for all practical cases. In between approximately 12 and 50% of inactive area of a single cell in the PV module the power loss increases nearly linearly from zero to the power of one double string.  相似文献   

20.
This paper presents a new approach for efficient utilization of building integrated photovoltaic (BIPV) systems under partial shading conditions in urban areas. The aim of this study is to find out the best electrical configuration by analyzing annual energy generation of the same BIPV system, in terms of nominal power, without changing physical locations of the PV modules in the PV arrays. For this purpose, the spatial structure of the PV system including the PV modules and the surrounding obstacles is taken into account on the basis of virtual reality environment. In this study, chimneys which are located on the residential roof-top area are considered to create the effect of shading over the PV array. The locations of PV modules are kept stationary, which is the main point of this paper, while comparing the performances of the configurations with the same surrounding obstacles that causes partial shading conditions. The same spatial structure with twelve distinct PV array configurations is considered. The same settling conditions on the roof-top area allow fair comparisons between PV array configurations. The payback time analysis is also performed with considering local and global maximum power points (MPPs) of PV arrays by comparing the annual energy yield of the different configurations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号