首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In the present work, a 2-D-model is used to investigate the approximate estimation of the natural convection heat loss from an actual geometry of the modified cavity receiver (hemisphere with aperture plate) of fuzzy focal solar dish concentrator. The analysis of the receiver has been carried out based on the assumption of the uniform and maximum solar flux distribution in the central plane of the receiver. The total heat loss from the receiver has been estimated for both the configurations “with insulation” (WI) and “without insulation” (WOI) at the protecting aperture plane of the receiver. The convection heat loss of the modified cavity receiver was estimated by varying the inclinations of the receiver from 0° (cavity aperture facing sideways) to 90° (cavity aperture facing down). The convection heat loss is maximum at 0° and decreases monotonically with increase in angle upto 90°. The effect of operating temperature on convection heat loss for different orientations of the receiver was studied. The results of the numerical analysis are presented for a modified cavity receiver “with insulation” (WI) and “without insulation” (WOI) in the form of Nusselt number correlation: and . The maximum convection heat loss occurs at 0° inclination for both cases of the receiver, which is 63.0% (WI) and 42.8% (WOI) of the total heat loss, though the heat loss in WI configuration is lower than that of WOI configuration. Upon increasing the inclination of the receiver, the convection heat loss reduces to a minimum of 12.5% (WI) and 24.9% (WOI) of the total heat loss at 90°. The result of the present numerical model of standard receiver configuration (modified cavity receiver with insulation at bottom) is comparable with other well-known models.  相似文献   

2.
An enhancement technique is developed for natural convection heat transfer from a vertical heated plate with inclined fins, attached on the vertical heated plate to isolate a hot air flow from a cold air flow. Experiments are performed in air for inclination angles of the inclined fins in the range of 30° to 90° as measured from a horizontal plane, with a height of 25 to 50 mm, and a fin pitch of 20 to 60 mm. The convective heat transfer rate for the vertical heated plate with inclined fins at an inclination angle of 60° is found to be 19% higher than that for a vertical heated plate with vertical fins. A dimensionless equation on the natural convection heat transfer of a vertical heated plate with inclined fins is presented. © 2007 Wiley Periodicals, Inc. Heat Trans Asian Res, 36(6): 334–344, 2007; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/htj.20168  相似文献   

3.
The problem of laminar natural convection from a horizontal cylinder with multiple equally spaced high conductivity fins on its outer surface was investigated numerically. The effect of several combinations of number of fins and fin height on the average effective Nusselt number was studied over a wide range of Rayleigh numbers. The results showed that there was an optimal combination of number of fins and fin height for maximum heat transfer from the cylinder for a given value of Rayleigh number. A high number of short fins slightly decreased the heat transfer from the cylinder. The calculated velocity and temperature profiles also were used to study the total entropy generation. The total entropy production was dominated by entropy generation due to thermal effects. The exception was at Ra D = 103 and a large cylinder diameter where entropy generation was dominated by entropy generation due to viscous effects. This information can be used to access the changes in the thermodynamic efficiency due to the addition of fins to enhance the natural convection heat transfer from a horizontal cylinder.  相似文献   

4.
A 2-D model has been proposed to investigate the approximate estimation of the natural convection heat loss from modified cavity receiver of without insulation (WOI) and with insulation (WI) at the bottom of the aperture plane in our previous article. In this paper, a 3-D numerical model is presented to investigate the accurate estimation of natural convection heat loss from modified cavity receiver (WOI) of fuzzy focal solar dish concentrator. A comparison of 2-D and 3-D natural convection heat loss from a modified cavity receiver is carried out. A parametric study is carried out to develop separate Nusselt number correlations for 2-D and 3-D geometries of modified cavity receiver for estimation of convective heat loss from the receiver. The results show that the 2-D and 3-D are comparable only at higher angle of inclinations (60° ? β ? 90°) of the receiver. The present 3-D numerical model is compared with other well known cavity receiver models. The 3-D model can be used for accurate estimation of heat losses from solar dish collector, when compared with other well known models.  相似文献   

5.
The aim of the present numerical study is to understand the natural convection flow and heat transfer in an inclined rectangular enclosure with sinusoidal temperature profile on the left wall. The top and bottom walls of the enclosure are kept to be adiabatic. The finite difference method is used to solve the governing equations with a range of inclination angles, aspect ratios and Rayleigh numbers. The results are presented in the form of streamlines, isotherms and Nusselt numbers. The heat transfer increases first then decreases with increasing the inclination of the enclosure for all aspect ratio and Rayleigh number. Increasing the aspect ratio shows a decreasing trend of the heat transfer for all Rayleigh numbers considered. A correlation equation is also introduced for the heat transfer analysis in this study.  相似文献   

6.
A numerical analysis of combined natural and forced convection is conducted for the fully developed laminar flow and heat transfer in a vertical semicircular duct with radial, internal longitudinal fins. Accurate solutions for heating upward flow are obtained by the finite difference method based on a fine grid, while the hydraulic and thermal conditions of the fins are ascertained. The results represent a range of Rayleigh numbers and various values of fin lengths and number of fins. The fully developed f Re and Nu values for pure forced convection in the finned semicircular duct are also documented. It is found that both the friction factor and the Nusselt number in the finned tube increase as the Rayleigh number increases. The effect of buoyancy is significant in semicircular ducts with short fins. By comparing the results of finless ducts with those of finned ducts, it was concluded that heat transfer in combined natural and forced convection in the semicircular duct is dramatically enhanced by using radial internal fins.  相似文献   

7.
The present study deals with fluid flow and heat transfer in the transition process of natural convection over an inclined plate. In order to examine the mechanism of the transition process, experiments on the flow and heat transfer were performed for various plate inclination angles in the range of 20 to 75°. The wall temperature and fluid flow fields were visualized using a liquid crystal sheet and fluorescent paint, respectively. The visualization confirmed that separation of a boundary layer flow took place, and the onset point of streaks appeared over the plate wall when the modified Rayleigh number exceeded a characteristic value for each inclination angle. The local Nusselt number in the transition range was proportional to the one‐third power of the local modified Rayleigh number. By introducing a nondimensional parameter, a new correlation between visualizations of the flow and temperature fields and heat transfer was proposed. © 2001 Scripta Technica, Heat Trans Asian Res, 30(8): 648–659, 2001  相似文献   

8.
Electrohydrodynamic enhanced heat transfer of the natural convection inside an enclosure with a vertical fin array is numerically investigated via a computational fluid dynamics technique. The parameters considered in a numerical modeling are supplied voltage, Rayleigh number, inclined angle, number of electrodes, electrode arrangement, number of fins, and fin length. The results reveal that the flow and heat transfer enhancements are significantly dependent on the number and position of electrodes around the fins. Moreover, the heat transfer coefficient is substantially improved by the electric field especially at the large number of fins and the long fin length.  相似文献   

9.
The turbulent natural convection of air flow in a confined cavity with two differentially heated side walls is investigated numerically up to Rayleigh number of 1012. The objective of the present work is to study the effect of the inclination angle and the amplitude of the undulation on turbulent heat transfer. The low-Reynolds-number kε, kω, kω–SST RANS models and a coarse DNS are used and compared to the experimental benchmark data of Ampofo and Karayiannis [F. Ampofo, T.G. Karayiannis, Experimental benchmark data for turbulent natural convection in an air filled square cavity, Int. J. Heat Mass Transfer 46 (2003) 3551–3572]. The kω–SST model is then used for the following test-cases as it gives the closest results to experimental data and coarse DNS for this case. The mean flow quantities and temperature field show good agreement with coarse DNS and measurements, but there are some slight discrepancies in the prediction of the turbulent statistics. Also, the numerical results of the heat flux at the hot wall are over predicted. The strong influence of the undulation of the cavity and its orientation is well shown. The trend of the local heat transfer is wavy with different frequencies for each undulation. The turbulence causes an increase in the convective heat transfer on the wavy wall surface compared to the square cavity for high Rayleigh numbers. A correlation of the mean Nusselt number function of the Rayleigh number is also proposed for the range of Rayleigh numbers of 109–1012.  相似文献   

10.
This article presents the results of a numerical study on natural convection heat transfer in an inclined enclosure filled with a water-CuO nanofluid. Two opposite walls of the enclosure are insulated and the other two walls are kept at different temperatures. The transport equations for a Newtonian fluid are solved numerically with a finite volume approach using the SIMPLE algorithm. The influence of pertinent parameters such as Rayleigh number, inclination angle, and solid volume fraction on the heat transfer characteristics of natural convection is studied. The results indicate that adding nanoparticles into pure water improves its heat transfer performance; however, there is an optimum solid volume fraction which maximises the heat transfer rate. The results also show that the inclination angle has a significant impact on the flow and temperature fields and the heat transfer performance at high Rayleigh numbers. In fact, the heat transfer rate is maximised at a specific inclination angle depending on Rayleigh number and solid volume fraction.  相似文献   

11.
Constructal design of vertical multiscale triangular fins in natural convection is investigated in this paper. The design consists of two parts. The first part is for single-scale triangular fins. The objective in the first design is to reach to the highest heat transfer density from the fins for three fin angles (15°, 30°, and 45°). The single-scale fins are placed in a horizontal array and considered as isothermal fins. The degrees of freedom are the fin angle, and the fin-to-fin spacing. The constraint is the fin height. The second part is for multiscale fins where small fins are placed between the large fins which are optimized in the first part. In the second part, the angles of the large and small scales fins are kept constant at (15°). The optimal fin-to-fin spacing which is obtained in the first part is considered a constraint in the second part. The Rayleigh numbers in this design are (Ra = 103, 104, and 105). The two-dimensional mass, momentum, and energy equations for natural convection are solved with the finite volume method. The results show that there is a benefit of placing the small-scale fins where the percentage increase in the heat transfer density is (10.22%) at (Ra = 103), and (50.6%) at (Ra = 105) due to existence of the small fins between the large fins.  相似文献   

12.
In this study, relationships of Nusselt–Rayleigh–Fourier type are proposed for the case of air-filled hemispherical cavity whose dome is oriented downwards and maintained isothermal. Its disk is subjected to a constant heat flux and inclined at an angle varying between 90° (vertical position) and 180° (disk horizontal with dome oriented downwards). The numerical approach is performed in transient regime by means of the finite volume method for Rayleigh numbers in the range of 104  5 × 108. These results are confirmed at steady state by measurements done for some configurations in a previous study for the same Rayleigh and inclination ranges. Otherwise, they complete other surveys considering inclination angles varying between 0° (horizontal cavity with dome oriented upwards) and 90° (vertical cavity) for a wider range of Rayleigh numbers. The correlations allow thermal control of devices submitted to natural convection in hemispherical cavities during the time preceding the steady state after their switch on.  相似文献   

13.
In this study numerical results for conjugate natural convection flow and heat transfer in a differentially-heated square cavity divided by a partition with finite thickness and thermal conductivity are presented. A series of numerical simulation is carried out using the finite volume method over a wide range of the Rayleigh number (105–109), with three dimensionless partition thicknesses (0.05, 0.1 and 0.2) and three dimensionless partition positions (0.25, 0.5 and 0.75), both are non-dimensionalized by the cavity width. The results show that the average Nusselt number increases with the Rayleigh number but decreases with partition thickness. It is also found that the partition position has a negligible effect on the average Nusselt number for the whole range of Rayleigh number considered.  相似文献   

14.
This study is concerned with transient and steady state heat transfer by natural convection in a differentially heated cavity. The purpose is to evaluate a passive approach for enhancing heat transfer through the cavity. In this study, the effects of three different corner geometries (including sharp, round and straight corners) and adiabatic extensions of various dimensions on natural convection heat transfer are investigated numerically. The numerical results show marginal variations of the heat transfer rates among the three different corner shapes and a strong dependence of heat transfer enhancement on the Rayleigh number. For a given Rayleigh number, the enhancement of heat transfer by adiabatic extensions is limited.  相似文献   

15.
对一个内有绝热障碍物的复杂方腔的自然对流换热问题进行了数值计算分析,采用SIMPLE算法,运用类似处理孤岛的方法成功地处理了方腔内部的障碍物,并在此基础之上,对不同高度的障碍物和不同Ra数的方腔内的自然对流换热进行了模拟计算。计算结果表明障碍物的高度和Ra数对流动换热有着重要影响,但其影响对冷热壁面不一样。  相似文献   

16.
A finite volume numerical simulation of natural convection in a parallelogrammic air-filled cavity having a heated concentric circular cylinder is performed. The left and right sidewalls of the cavity are maintained at a uniform cold temperature, while both upper and lower walls of it are considered thermally insulated. A wide range of significant parameters such as Rayleigh number, inclination angle and cylinder vertical locations are considered in the present study. Comparison with previously published works is made and found to be an excellent agreement. The results show that the strength of the flow circulation and the thickness of thermal boundary layer around the hot circular cylinder are increased dramatically when the Rayleigh number increases. Also, to increase the flow circulation inside the parallelogrammic cavity, it is recommended to make the inner cylinder moves downward until it reaches to [δ =  0.2] and the parallelogrammic cavity sidewalls inclined to [Φ = 15°]. Moreover, it is found that for various values of the inclination angle, the average Nusselt numbers at inner cylinder surface and at both cavity sidewalls, decrease when the cylinder moves upward, while they increase when the cylinder moves downward.  相似文献   

17.
A numerical investigation is carried out to analyze natural convection heat transfer inside a cavity with a sinusoidal vertical wavy wall and filled with a porous medium. The vertical walls are isothermal while the top and bottom horizontal straight walls are kept adiabatic. The transport equations are solved using the finite element formulation based on the Galerkin method of weighted residuals. The validity of the numerical code used is ascertained by comparing our results with previously published results. The importance of non-Darcian effects on convection in a wavy porous cavity is analyzed in this work. Different flow models for porous media such, as Brinkman-extended Darcy, Forchheimer-extended Darcy, and the generalized flow models, are considered. Results are presented in terms of streamlines, isotherms, and local heat transfer. The implications of Rayleigh number, number of wavy surface undulation and amplitude of the wavy surface on the flow structure and heat transfer characteristics are investigated in detail while the Prandtl number is considered equal to unity.  相似文献   

18.
In the present work, a numerical study of the effect of a hot wavy wall of a laminar natural convection in an inclined square cavity, differentially heated, was carried out. This problem is solved by using the partial differential equations, which are the vorticity transport, heat transfer and stream function in curvilinear co-ordinates. The tests were performed for different inclination angles, amplitudes and Rayleigh numbers while the Prandtl number was kept constant. Two geometrical configurations were used namely one and three undulations.The results obtained show that the hot wall undulation affects the flow and the heat transfer rate in the cavity. The mean Nusselt number decreases comparing with the square cavity. The trend of the local heat transfer is wavy. The frequency of the latter is different from the undulated wall frequency.  相似文献   

19.
Natural convection heat transfer in partially open inclined square cavities   总被引:1,自引:0,他引:1  
A numerical study has been carried out on inclined partially open square cavities, which are formed by adiabatic walls and a partial opening. The surface of the wall inside the cavity facing the partial opening is isothermal. Steady-state heat transfer by laminar natural convection in a two dimensional partially open cavity is studied by numerically solving equations of mass, momentum and energy. Streamlines and isotherms are produced, heat and mass transfer is calculated. A parametric study is carried out using following parameters: Rayleigh number from 103 to 106, dimensionless aperture size from 0.25 to 0.75, aperture position at high, center and low, and inclination of the opening from 0° (facing upward) to 120° (facing 30° downward). It is found that the volume flow rate and Nusselt number are an increasing function of Rayleigh number, aperture size and generally aperture position. Other parameters being constant, Nusselt number is a non-linear function of the inclination angle. Depending on the application, heat transfer can be maximized or minimized by selecting appropriate parameters, namely aperture size, aperture position and inclination angle at a given operation Rayleigh number.  相似文献   

20.
《Applied Thermal Engineering》2007,27(5-6):1036-1042
Laminar mixed convective heat transfer in two-dimensional shallow rectangular driven cavities of aspect ratio 10 is studied numerically. The top moving lid of the cavity is at a higher temperature than the bottom wall. Computations are performed for Rayleigh numbers ranging from 105 to 107 keeping the Reynolds number fixed at 408.21, thus encompassing the dominating forced convection, mixed convection, and dominating natural convection flow regimes. The fluid Prandtl number is taken as 6 representing water. The effects of inclination of the cavity on the flow and thermal fields are investigated for inclination angles ranging from 0° to 30°. Interesting behaviours of the flow and thermal fields with increasing inclination are observed. The streamline and isotherm plots and the variation of the local and average Nusselt numbers at the hot and cold walls are presented. The average Nusselt number is found to increase with cavity inclination. The rate of increase of the average Nusselt number with cavity inclination is mild for dominating forced convection case while it is much steeper in dominating natural convection case.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号