首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Hydrocarbon exhaust emissions are mainly recognized as a consequent of carbon-based fuel combustion in compression ignition (CI) engines. Alternative fuels can be coupled with hydrocarbon fuels to control the pollutant emissions and improve the engine performance. In this study, different parameters that influence the engine performance and emissions are illustrated with more details. This numerical work was carried out on a dual-fuel CI engine to study its performance and emission characteristics at different hydrogen energy ratios. The simulation model was run with diesel as injected fuel and hydrogen, along with air, as inducted fuel. Three-dimensional CFD software for numerical simulations was implemented to simulate the direct-injection CI engine. A reduced-reaction mechanism for n-heptane was considered in this work instead of diesel. The Hiroyasu-Nagel model was presented to examine the rate of soot formation inside the cylinder. This work investigates the effect of hydrogen variation on output efficiency, ignition delay, and emissions. More hydrogen present inside the engine cylinder led to lower soot emissions, higher thermal efficiency, and higher NOx emissions. Ignition timing delayed as the hydrogen rate increased, due to a delay in OH radical formation. Strategies such as an exhaust gas recirculation (EGR) method and diesel injection timing were considered as well, due to their potential effects on the engine outputs. The relationship among the engine outputs and the operation conditions were also considered.  相似文献   

2.
The effects of biodiesel (rapeseed methyl ester, RME) and different diesel/RME blends on the diesel engine NOx emissions, smoke, fuel consumption, engine efficiency, cylinder pressure and net heat release rate are analysed and presented. The combustion of RME as pure fuel or blended with diesel in an unmodified engine results in advanced combustion, reduced ignition delay and increased heat release rate in the initial uncontrolled premixed combustion phase. The increased in-cylinder pressure and temperature lead to increased NOx emissions while the more advanced combustion assists in the reduction of smoke compared to pure diesel combustion. The lower calorific value of RME results in increased fuel consumption but the engine thermal efficiency is not affected significantly. When similar percentages (% by volume) of exhaust gas recirculation (EGR) are used in the cases of diesel and RME, NOx emissions are reduced to similar values, but the smoke emissions are significantly lower in the case of RME. The retardation of the injection timing in the case of pure RME and 50/50 (by volume) blend with diesel results in further reduction of NOx at a cost of small increases of smoke and fuel consumption.  相似文献   

3.
This paper documents the application of exhaust gas fuel reforming of two alternative fuels, biodiesel and bioethanol, in internal combustion engines. The exhaust gas fuel reforming process is a method of on-board production of hydrogen-rich gas by catalytic reaction of fuel and engine exhaust gas. The benefits of exhaust gas fuel reforming have been demonstrated by adding simulated reformed gas to a diesel engine fuelled by a mixture of 50% ultra low sulphur diesel (ULSD) and 50% rapeseed methyl ester (RME) as well as to a homogeneous charge compression ignition (HCCI) engine fuelled by bioethanol. In the case of the biodiesel fuelled engine, a reduction of NOx emissions was achieved without considerable smoke increase. In the case of the bioethanol fuelled HCCI engine, the engine tolerance to exhaust gas recirculation (EGR) was extended and hence the typically high pressure rise rates of HCCI engines, associated with intense combustion noise, were reduced.  相似文献   

4.
二甲醚发动机燃烧特性的试验与数值模拟研究   总被引:6,自引:0,他引:6  
在一台直喷式压燃发动机上开展了二甲醚燃烧与排放特性的试验与数值模拟研究。测量了二甲醚在高压燃油泵内的泄漏量及其与发动机转速之间的定量关系,并就发动机分别燃用二甲醚和柴油的运转性能进行了对比试验研究,结果表明,发动机燃用二甲醚要比燃用柴油具有更好的性能与排放水平;另从二甲醚低温着火的化学反应机理人手,开展了其自燃着火过程的数值模拟研究,进而建立了计及温度、压力和燃空当量比因素的DME滞燃期数据库;通过将该数据库与发动机循环模拟程序相耦合,对DME发动机的运转性能进行了变参数预测分析,预测结果与试验结果吻合较好。  相似文献   

5.
Ignition delay (ID) is one of the important parameters that make influenced on the combustion process inside the cylinder. This ignition delay affects not only the performances but also the noise and emissions of the engine. In this regards the experiments were conducted on single cylinder 4–stroke compression ignition research diesel engine, power 3.50 kW at constant speed 1500 rpm Kirloskar model TV1 with base fuel as diesel and hydrogen as secondary fuel with and without Di-tertiary-butyl-peroxide (DTBP). Experiments were conducted to measure the ignition delay of the dual fuel diesel (DFD) engine at different load conditions and substitution of diesel by hydrogen with or without DTBP and then it was compared with predicted ID given by Hardenberg-Hase equation and modified Hardenberg-Hase equation.The experimental values of ignition delay were compared with theoretical ignition delay which was predicted on the basis of Hardenberg-Hase equation by considering mean cylinder temperature, pressure, activation energy and cetane number and variations are found in between 6.60% and 21.22%. While, the Hardenberg-Hase equation was modified (by considering variation in activation energy) for DFD engine working on diesel as primary fuel and hydrogen as secondary fuel shows variations 1.20%–11.96%. Furthermore, with DTBP it gives variation up to 18.01%. It was found that ID decreases with increase in percentage of DTBP and hydrogen in air-fuel mixture. This might be due to the cetane improver nature of DTBP, pre-ignition reaction rate and energy release rate of hydrogen fuel. The polytropic index get increased by addition of (Di-tert butyl peroxide) DTBP. Similarly, 5% Di tertiary butyl peroxide reduces Ignition delay.  相似文献   

6.
在缸内直喷火花点火发动机上开展了天然气掺混0%-18%氢气的混合燃料不同点火时刻下的试验研究。结果表明:对于给定的喷射时刻和喷射持续期,点火时刻对发动机性能、燃烧和排放有较大影响,喷射结束时刻与点火时刻的间隔对直喷天然气发动机极为重要,喷射结束时刻与点火时刻的间隔缩短时,混合气分层程度高,燃烧速率快,热效率高。最大放热率等燃烧特征参数随点火时刻的提前而增加。HC排放随点火时刻的提前而下降,CO2和NOx排放随点火时刻的提前而增加,NOx排放的增加在大点火提前角下更明显。掺氢可降低HC排放,对CO和CO2排放影响不大。掺氢量大于10%时可提高天然气发动机热效率。  相似文献   

7.
The combustion of hydrogen–diesel blend fuel was investigated under simulated direct injection (DI) diesel engine conditions. The investigation presented in this paper concerns numerical analysis of neat diesel combustion mode and hydrogen enriched diesel combustion in a compression ignition (CI) engine. The parameters varied in this simulation included: H2/diesel blend fuel ratio, engine speed, and air/fuel ratio. The study on the simultaneous combustion of hydrogen and diesel fuel was conducted with various hydrogen doses in the range from 0.05% to 50% (by volume) for different engine speed from 1000 – 4000 rpm and air/fuel ratios (A/F) varies from 10 – 80. The results show that, applying hydrogen as an extra fuel, which can be added to diesel fuel in the (CI) engine results in improved engine performance and reduce emissions compared to the case of neat diesel operation because this measure approaches the combustion process to constant volume. Moreover, small amounts of hydrogen when added to a diesel engine shorten the diesel ignition lag and, in this way, decrease the rate of pressure rise which provides better conditions for soft run of the engine. Comparative results are given for various hydrogen/diesel ratio, engine speeds and loads for conventional Diesel and dual fuel operation, revealing the effect of dual fuel combustion on engine performance and exhaust emissions.  相似文献   

8.
在一台电控共轨发动机上,试验研究了乙醇掺混比例和喷射定时对二甲醚-乙醇混合燃料燃烧及排放的影响。结果表明:随乙醇比例的增加,滞燃期延长,燃烧持续期缩短,最大压力升高率上升。随喷射推迟,滞燃期延长,燃烧相位延后,燃烧持续期在纯二甲醚时延长,而在掺混乙醇时则先延长后缩短,最大压力升高率先下降后上升。掺混乙醇和推迟喷射使预混燃烧比例增加。随喷射推迟,混合燃料的排气温度升高,喷射推迟到上止点后,排气温度随乙醇比例的增加而升高,排气温度高,则废气能量高,增压器增压比大,进气流量大,导致缸内压缩压力升高。在上止点前喷射时,掺混乙醇能使HC和CO排放保持在较低范围的同时,一定程度降低NO_x排放,掺混15%的乙醇较纯二甲醚最大降低约11%NO_x排放。随推迟喷射,NO_x排放降低,最大降幅达52%,在过分推迟燃料喷射时,因热效率低,循环喷射量增加,含15%乙醇混合燃料的NO_x排放会高于纯二甲醚。HC和CO排放随喷射推迟而升高,且升高幅度增大。  相似文献   

9.
An experimental study on the combustion and emission characteristics of a direct-injection spark-ignited engine fueled with natural gas/hydrogen blends under various ignition timings was conducted. The results show that ignition timing has a significant influence on engine performance, combustion and emissions. The interval between the end of fuel injection and ignition timing is a very important parameter for direct-injection natural gas engines. The turbulent flow in the combustion chamber generated by the fuel jet remains high and relative strong mixture stratification is introduced when decreasing the angle interval between the end of fuel injection and ignition timing giving fast burning rates and high thermal efficiencies. The maximum cylinder gas pressure, maximum mean gas temperature, maximum rate of pressure rise and maximum heat release rate increase with the advancing of ignition timing. However, these parameters do not vary much with hydrogen addition under specific ignition timing indicating that a small hydrogen fraction addition of less than 20% in the present experiment has little influence on combustion parameters under specific ignition timing. The exhaust HC emission decreases while the exhaust CO2 concentration increases with the advancing of ignition timing. In the lean combustion condition, the exhaust CO does not vary much with ignition timing. At the same ignition timing, the exhaust HC decreases with hydrogen addition while the exhaust CO and CO2 do not vary much with hydrogen addition. The exhaust NOx increases with the advancing of ignition timing and the behavior tends to be more obvious at large ignition advance angle. The brake mean effective pressure and the effective thermal efficiency of natural gas/hydrogen mixture combustion increase compared with those of natural gas combustion when the hydrogen fraction is over 10%.  相似文献   

10.
11.
Hydrogen-diesel dual-fuel operation can provide significant benefits to the performance and carbon-based emissions formation of compression-ignition engines. The wide flammability range of hydrogen allows engine operation at extremely low equivalence ratios while its high diffusivity and flame speed promote wide range combustion inside the cylinder. Nonetheless, despite the excellent properties of hydrogen for internal combustion, unburned hydrogen emissions and poor combustion efficiency have been previously observed at low-load conditions of compression ignition engines.The focus of the present study is to assess the effects of different engine operation and diesel injection parameters on the combustion efficiency of a heavy-duty dual-fuel engine while observing their interactions with the brake thermal efficiency (BTE) and emissions formation of the engine. In an attempt to reduce the unburned hydrogen rates at the exhaust of the engine, exhaust gas recirculation (EGR) and different diesel injection strategies were implemented. Statistical methods were applied in this study to reduce the experimental time.The results show a strong connection between unburned hydrogen rates, combustion and brake thermal efficiencies with the EGR rate. Higher EGR rates increase the intake charge temperature and provide improved hydrogen combustion and fuel economy. Operation of the dual-fuel engine at low-load with high EGR rate and slightly advanced main diesel injection can deliver simultaneous benefits to most of the harmful emissions and the BTE of the engine. Despite the efforts to achieve optimal engine operation at low loads, the combustion efficiency for most of the tested cases was in the range of 90%. Thus, increased hydrogen rates should be avoided as the benefits of the dual-fuel operation are weak at low-load conditions.  相似文献   

12.
Hydrogen is considered as an excellent energy carrier and can be used in diesel engines that operate in dual fuel mode. Many studies have shown that biodiesel, which is sustainable, clean, and safe, a good alternative to fossil fuel. However, tests have confirmed that using biodiesel or hydrogen as a fuel or added fuel in compression ignition engines increases NOx concentrations. Cooled or hot exhaust gas recirculation (EGR) effectively controls the NOx outflows of diesel engines. However, this technique is restricted by high particulate matter PM emissions and the low thermal efficiency of diesel engines.In this study, gaseous hydrogen was added to the intake manifold of a diesel engine that uses biodiesel fuel as pilot fuel. The investigation was conducted under heavy-EGR conditions. An EGR system was modified to achieve the highest possible control on the EGR ratio and temperature. Hot EGR was recirculated directly from the engine exhaust to the intake manifold. A heat exchanger was utilized to maintain the temperature of the cooled EGR at 25 °C.The supplied hydrogen increased NOx concentrations in the exhaust gas emissions and high EGR rates reduced the brake thermal efficiency. The reduction in NOx emissions depended on the added hydrogen and the EGR ratios when compared with pure diesel combustion. Adding hydrogen to significant amounts of recycled exhaust gas reduced the CO, PM, and unburned hydrocarbon (HC) emissions significantly. Results showed that using hydrogen and biodiesel increases engine noise, which is reduced by adding high levels of EGR.  相似文献   

13.
In this experimental study, hydrogen was inducted along with air and diesel was injected into the cylinder using a high pressure common rail system, in a single cylinder homogeneous charge compression ignition engine. An electronic controller was used to set the required injection timing of diesel for best thermal efficiency. The influences of hydrogen to diesel energy ratio, output of the engine and exhaust gas recirculation (EGR) on performance, emissions and combustion were studied in detail. An increase in the amount of hydrogen improved the thermal efficiency by retarding the combustion process. It also lowered the exhaust emissions. Large amounts of hydrogen and EGR were needed at high outputs for suppressing knock. The range of operation was brake mean effective pressures of 2–4 bar. The levels of HC and CO emitted were not significantly influenced by the amount of hydrogen that was used.  相似文献   

14.
Diesel fuelled engines emit higher levels of carbon dioxide and other harmful air pollutants (such as noxious gases and particulates) per litre of fuel than gasoline engines. This fact, combined with the recent diesel emission scandal and the rumours of more widespread cheating by automotive manufacturers have initiated a long discussion about the future and sustainability of diesel engines.Improving the compression ignition engine is a direct way of going green. Reducing the harmful emissions can be achieved by future developments in the engine technology but also the implementation of alternative fuels. Hydrogen is a renewable, high-efficient and clean fuel that can potentially save the future of diesel-type engines. The evolution of high-efficiency renewable hydrogen production methods is the most important path for the start of a new hydrogen era for the compression ignition engine that can improve its sustainability and maximum efficiency.This paper provides a detailed overview of hydrogen as a fuel for compression ignition engines. A comprehensive review of the past and recent research activities on the topic is documented. The review focuses on the in-cylinder combustion of hydrogen either as a primary fuel or in dual fuel operation. The effects of injection strategies, compression ratio and exhaust gas recirculation on the combustion and emission characteristics of the hydrogen fuelled engine are fully analysed. The main limitations, challenges and perspectives are presented.  相似文献   

15.
This work presents an experimental study describing a six-cylinder spark ignition engine running with a lean equivalence ratio, high compression ratio, ignition delay and used in a cogeneration system (heat and electricity production). Three types of fuels; natural gas, pure methane and methane/hydrogen blend (85% CH4 and 15% H2 by volume), were used for comparison purposes. Each fuel has been investigated at 1500 rpm and for various engine loads fixed by electrical power output conditions. CO, CO2, HC, and NOx emissions values, and exhaust gas temperature were measured. The effect of fuel composition on engine characteristics has been studied. The results show, that the hydrogen addition increased HC emissions (around 18%), as well as performance, whilst it reduced NOx (around 31%), exhaust gas temperature, CO and CO2.  相似文献   

16.
An experimental study on the combustion and emission characteristics of a direct-injection spark-ignited engine fueled with natural gas/hydrogen blends under various ignition timings was conducted. The results show that ignition timing has a significant influence on engine performance, combustion and emissions. The interval between the end of fuel injection and ignition timing is a very important parameter for direct-injection natural gas engines. The turbulent flow in the combustion chamber generated by the fuel jet remains high and relative strong mixture stratification is introduced when decreasing the angle interval between the end of fuel injection and ignition timing giving fast burning rates and high thermal efficiencies. The maximum cylinder gas pressure, maximum mean gas temperature, maximum rate of pressure rise and maximum heat release rate increase with the advancing of ignition timing. However, these parameters do not vary much with hydrogen addition under specific ignition timing indicating that a small hydrogen fraction addition of less than 20% in the present experiment has little influence on combustion parameters under specific ignition timing. The exhaust HC emission decreases while the exhaust CO2 concentration increases with the advancing of ignition timing. In the lean combustion condition, the exhaust CO does not vary much with ignition timing. At the same ignition timing, the exhaust HC decreases with hydrogen addition while the exhaust CO and CO2 do not vary much with hydrogen addition. The exhaust NOx increases with the advancing of ignition timing and the behavior tends to be more obvious at large ignition advance angle. The brake mean effective pressure and the effective thermal efficiency of natural gas/hydrogen mixture combustion increase compared with those of natural gas combustion when the hydrogen fraction is over 10%. __________ Translated from Transactions of CSICE, 2006, 24(5): 394–401 [译自:内燃机学报]  相似文献   

17.
This article is a condensed overview of a dimethyl ether (DME) fuel application for a compression ignition diesel engine. In this review article, the spray, atomization, combustion and exhaust emissions characteristics from a DME-fueled engine are described, as well as the fundamental fuel properties including the vapor pressure, kinematic viscosity, cetane number, and the bulk modulus. DME fuel exists as gas phase at atmospheric state and it must be pressurized to supply the liquid DME to fuel injection system. In addition, DME-fueled engine needs the modification of fuel supply and injection system because the low viscosity of DME caused the leakage. Different fuel properties such as low density, viscosity and higher vapor pressure compared to diesel fuel induced the shorter spray tip penetration, wider cone angle, and smaller droplet size than diesel fuel. The ignition of DME fuel in combustion chamber starts in advance compared to diesel or biodiesel fueled compression ignition engine due to higher cetane number than diesel and biodiesel fuels. In addition, DME combustion is soot-free since it has no carbon–carbon bonds, and has lower HC and CO emissions than that of diesel combustion. The NOx emission from DME-fueled combustion can be reduced by the application of EGR (exhaust gas recirculation). This article also describes various technologies to reduce NOx emission from DME-fueled engines, such as the multiple injection strategy and premixed combustion. Finally, the development trends of DME-fueled vehicle are described with various experimental results and discussion for fuel properties, spray atomization characteristics, combustion performance, and exhaust emissions characteristics of DME fuel.  相似文献   

18.
Successfully designing and making effective of use of the next generation of liquid fuels, which will be derived from a range of biomass and fossil sources, requires an understanding of the interactions between structurally similar and dissimilar fuel components when utilised in current engine technology. Interactions between fuel components can influence the release of energy and production of harmful emissions in compression ignition combustion through determination of the autoignition behavior of the fuel. This paper presents experimental studies carried out in a single-cylinder engine supplied with a range of binary mixture fuels to investigate the effect of fuel component interactions on autoignition in direct injection compression ignition. A range of binary mixtures consisting of toluene and n-heptane and also 1-octene and n-octane were tested so as to observe respectively the effect of an aromatic compound and an alkene on n-alkane combustion and emissions. The engine tests were carried out at constant injection timing and they were repeated at constant ignition timing and at constant ignition delay, the latter being achieved through the addition to the various fuels of small quantities of ignition improver (2-ethylhexyl nitrate). Increasing the presence of toluene in the toluene/n-heptane binary mixtures resulted in an increased ignition delay time and generated a distinct two stage ignition process. An increased level of 1-octene in the binary mixtures of 1-octene/n-octane was also found to increase ignition delay, though to a much lesser extent than toluene in the case of the toluene/n-heptane mixtures. Interactions between the fuel components during the ignition delay period appear important in the case of the toluene/n-heptane mixtures but not those of 1-octene/n-octane. At constant injection and constant ignition timings, the combustion phasing and the level of emissions produced by each binary mixture were primarily driven by the ignition delay time. With ignition delay equalised, an effect of adiabatic flame temperature on NOx production was visible.  相似文献   

19.
In recent years, there has been a rapid transition from internal combustion engines to hybrid and electric vehicles. It is an inevitable fact that the dominance of internal combustion engines in the market will continue for many years due to the charging and battery problems in these vehicles. Therefore, it is an important issue to improve the performance and emissions of internal combustion engines by making them work with alternative energy sources. In this study, hydrogen-diesel dual fuel mode was used in a dual-fuel compression ignition single cylinder engine with common rail fuel injection system and electronically controlled gas fuel system. The study was carried out at constant speed (1850 rpm), different load (3-4.5-6-7.5-9 Nm) and different hydrogen injector opening amounts (1.6-1.8-2.0 ms). The effects of hydrogen energy ratios obtained with different hydrogen injector opening amount on engine performance and emissions were examined. According to the results, it was determined that the in-cylinder pressure values increased at medium and high loads, and the specific energy consumption decreased. When the emission values were examined, it was determined that there was an increase in NO emissions and a significant decrease in other emissions. However, increasing the hydrogen energy ratio above 14% adversely affected engine performance and emissions.  相似文献   

20.
Energy security is an important consideration for development of future transport fuels. Among the all gaseous fuels hydrogen or hydroxy (HHO) gas is considered to be one of the clean alternative fuels. Hydrogen is very flammable gas and storing and transporting of hydrogen gas safely is very difficult. Today, vehicles using pure hydrogen as fuel require stations with compressed or liquefied hydrogen stocks at high pressures from hydrogen production centres established with large investments.Different electrode design and different electrolytes have been tested to find the best electrode design and electrolyte for higher amount of HHO production using same electric energy. HHO is used as an additional fuel without storage tanks in the four strokes, 4-cylinder compression ignition engine and two-stroke, one-cylinder spark ignition engine without any structural changes. Later, previously developed commercially available dry cell HHO reactor used as a fuel additive to neat diesel fuel and biodiesel fuel mixtures. HHO gas is used to hydrogenate the compressed natural gas (CNG) and different amounts of HHO-CNG fuel mixtures are used in a pilot injection CI engine. Pure diesel fuel and diesel fuel + biodiesel mixtures with different volumetric flow rates are also used as pilot injection fuel in the test engine. The effects of HHO enrichment on engine performance and emissions in compression-ignition and spark-ignition engines have been examined in detail. It is found from the experiments that plate type reactor with NaOH produced more HHO gas with the same amount of catalyst and electric energy. All experimental results from Gasoline and Diesel Engines show that performance and exhaust emission values have improved with hydroxy gas addition to the fossil fuels except NOx exhaust emissions. The maximum average improvements in terms of performance and emissions of the gasoline and the diesel engine are both graphically and numerically expressed in results and discussions. The maximum average improvements obtained for brake power, brake torque and BSFC values of the gasoline engine were 27%, 32.4% and 16.3%, respectively. Furthermore, maximum improvements in performance data obtained with the use of HHO enriched biodiesel fuel mixture in diesel engine were 8.31% for brake power, 7.1% for brake torque and 10% for BSFC.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号