首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 851 毫秒
1.
Pd–WO3 nanostructures were incorporated on graphene oxide (GO) and partially reduced graphene oxide (PRGO) sheets using a controlled hydrothermal process to fabricate effective hydrogen gas sensors. Pd–WO3 nanostructures showed ribbon-like morphologies and Pd–WO3/GO presented an irregular nanostructured form, while Pd–WO3/PRGO exhibited a hierarchical nanostructure with a high surface area. Gas sensing properties of thin films of these materials were studied for different hydrogen concentrations (from 20 to 10,000 ppm) at various temperatures (from room temperature to 250 °C). Although adding GO in the Pd–WO3, after hydrothermal process could increase the film conductivity, gas sensitivity was reduced to half, due to lower surface area of the irregular morphology in comparison with the ribbon-like morphology. The Pd–WO3/PRGO films showed an optimum sensitivity (∼10 folds better than the sensitivity of Pd–WO3/GO), and a fast response and recovery time (<1 min) at low temperature of 100 °C. Moreover, the Pd–WO3/PRGO-based gas sensor was sensitive to 20 ppm concentration of hydrogen gas at room temperature. The results confirmed the effect of residual oxygen-containing functional groups of PRGO on the growth and morphology of Pd–WO3 as well as gas sensing properties of metal oxide/graphene based hybrid nanostructures.  相似文献   

2.
Reduced graphene oxide (RGO) was used to improve the hydrogen sensing properties of Pd and Pt-decorated TiO2 nanoparticles by facile production routes. The TiO2 nanoparticles were synthesized by sol–gel method and coupled on GO sheets via a photoreduction process. The Pd or Pt nanoparticles were decorated on the TiO2/RGO hybrid structures by chemical reduction. X-ray photoelectron spectroscopy demonstrated that GO reduction is done by the TiO2 nanoparticles and Ti–C bonds are formed between the TiO2 and the RGO sheets as well. Gas sensing was studied with different concentrations of hydrogen ranging from 100 to 10,000 ppm at various temperatures. High sensitivity (92%) and fast response time (less than 20 s) at 500 ppm of hydrogen were observed for the sample with low concentration of Pd (2 wt.%) decorated on the TiO2/RGO sample at a relatively low temperature (180 °C). The RGO sheets, by playing scaffold role in these hybrid structures, provide new pathways for gas diffusion and preferential channels for electrical current. Based on the proposed mechanisms, Pd/TiO2/RGO sample indicated better sensing performance compared to the Pt/TiO2/RGO. Greater rate of spill-over effect and dissociation of hydrogen molecules on Pd are considered as possible causes of the enhanced sensitivity in Pd/TiO2/RGO.  相似文献   

3.
The plasma spray technique was well proven in producing metal oxide based gas sensors in the last two decades using different powder feedstocks. However, limited research was made to fabricate hydrogen gas sensor from tin oxide layer coated over tungsten oxide layer. This paper attempts to interpret the hydrogen gas sensing performances of plasma sprayed coating derived by depositing tin oxide layer over tungsten oxide (SnO2/WO3) layer. Plasma sprayed SnO2/WO3 sensor showed maximum response of 90% at 150 °C in contrast to stand-alone WO3 (89% at 350 °C) and stand-alone SnO2 (89% at 250 °C). The lower operating temperature of SnO2/WO3 sensor without compromising gas response was attributed to the WO3–SnO2 hetero-junction. SnO2/WO3 sensor showed selective sensing towards hydrogen with respect to carbon monoxide and methane gases. This sensor also possessed repeatable characteristics after 39 days from the initial measurement. In a nut-shell, plasma spayed SnO2/WO3 sensor showed stability of base resistance, repeatability after successive response and recovery cycles, selective sensing towards 500 ppm H2 with significant magnitude of gas response of 90%, response time of 35 s and recovery time of 269 s at a temperature of 150 °C.  相似文献   

4.
Polyaniline (emeraldine)/anatase TiO2 nanocomposite (PA-NC) was prepared by a chemical oxidative polymerization. The thin films of PA-NC for hydrogen gas sensing application were deposited on Cu-interdigited electrodes by spin coating technique. A study on characteristics of PA-NC thin films was demonstrated by a porous cylindrical morphology. The response and response/recovery time of sensors for hydrogen gas were evaluated by the change of TiO2 wt% at environmental conditions. Resistance-sensing measurement was exhibited a high sensitivity about 1.63, a good Long-term response, low response time and recovery time about 83 s and 130 s, respectively, at 0.8 vol% hydrogen gas for PA-NC including 25% wt of anatase nanoparticles. The current–voltage characteristics of PA-NC gas sensors before and after hydrogen gas injection showed a nonlinear ohmic current. Moreover, we studied the formation of PA-NCs and their hydrogen gas sensing mechanism based on contact regions in PA-NC.  相似文献   

5.
Considering the poor response performance of fiber bragg grating (FBG) sensor based on WO3, in this paper, a polymer intercalated method is proposed to accomplish high-performance optical fiber hydrogen sensor. Tetrabutylammonium hydroxide (TBAOH) molecule intercalated WO3 are synthesized successfully and the effect of the intercalation amount to sensing performance has been investigated. The experiment results show that, at the concentration of 10,000 ppm, the t90 response time of the sensor based on TBAOH-Pt/WO3 is improved by 308% compared with that of WO3 FBG sensor. In addition, the FBG hydrogen sensor based on the novel materials can detect hydrogen concentration ranging from 300 ppm to 12,000 ppm in air, demonstrating excellent stability and repeatability, which show wide application prospect in the future.  相似文献   

6.
Hydrogen sensor based on graphene nano-composite with Pd-Ag nanoparticles was fabricated by MEMS process. Structural and morphological properties of the sensing film were studied by an energy dispersive spectroscopy (EDS) and field emission scanning electron microscopy (FESEM), respectively. The H2 sensing properties of as-formed sensor were investigated by measuring the resistance changes at different H2 concentrations. The maximum gas response was 16.2% at 1000 ppm of H2 gas. The gas sensitivity of the as-formed H2 sensor showed linear behavior with the hydrogen concentration. Experimental results showed that the coupling of graphene with Pd/Ag alloy enhanced significantly hydrogen sensing performance.  相似文献   

7.
A platinum (Pt) catalytic metal and a hydrogen peroxide oxidation approach are utilized to fabricate a hydrogen sensor based on a GaN Schottky diode. The presence of a gallium oxide dielectric layer between the Pt metal and the GaN surface can increase the adsorption sites for dissociated hydrogen species, thereby improving the related sensing ability towards hydrogen gas. Experimentally, under introduced 1% hydrogen/air gas, the studied device shows a high sensing response ratio of 1.03 × 105 at 300 K. In addition, the lowest detecting level of 1 ppm hydrogen at 300 K is obtained. This device also exhibits good high-temperature durability (≥573 K) and a high sensing speed. The response (recovery) time constant at 300 K is only 74 (103) sec even under a very low hydrogen concentration of 1 ppm; these time constant values are much smaller than those of palladium metal-based sensors. Under the 1% hydrogen/air, the response (recovery) time constant at 300 K is drastically reduced to 15 (19) sec. Furthermore, in order to improve the feasibility of transmitting the sensing data, the concept of linear differentiation method is employed to eliminate redundant data. The simulation result shows that the average of the reduced ratios can achieve 77.88%. Therefore, this Schottky diode device not only shows promise to detect hydrogen gas, but also can be utilized effectively in the transmission of sensing data.  相似文献   

8.
A simple method using a combination of nanocomposite plating and firing techniques for the production of horizontally aligned carbon nanotube (HACNT)-based hydrogen gas sensors is presented. This low temperature (100 °C) firing process generates cracks in which HACNTs are formed. Hydrogen sensing characteristics are measured in various gas concentrations from 200 ppm to 16,000 ppm at room temperature. The HACNT-based hydrogen gas sensor performs with low noise, short response time, and fast recovery time. It is found that the HACNT-based sensors have a much better sensitivity response (approximately 5 times) than the original CNT/Ni film sensors which use a nanocomposite plating technique only. The Raman spectra of the HACNT-based sensors show that more defects and oxidation were generated on the HACNTs after the firing process. The firing process decreases the oxygen vacancies of CNTs to enhance the sensitivity response of HACNT-based sensors. In addition HACNT-based sensors are relatively simple, cost-effective and mass-producible.  相似文献   

9.
It is still a challenging task to achieve the rapid detection of hydrogen (H2) with the rapid development of hydrogen energy sector. In this work, the H2 sensing capabilities of pristine and Pd-modified SnO2 nanoparticles with the size of ~7 nm were systematically evaluated. The SnO2 nanoparticles were synthesized via hydrothermal method and Pd modification was performed using impregnation route. Pd modification remarkably upgraded the H2 sensing performances compared with the pristine SnO2 gas sensor. The working temperature of SnO2 decreased from 300 °C to 125 °C after Pd loading. Among the prepared Pd/SnO2 gas sensors, 0.50 at.% Pd/SnO2 sensor exhibited the highest response magnitude of 254 toward 500 ppm H2 and rapid response/recovery time of 1/22 s at 125 °C. The enhanced H2 sensing capabilities by Pd modification may be related to the catalytic effect and the resistance modulation.  相似文献   

10.
Practical microsensors for fast, highly sensitive hydrogen gas detection were fabricated by combining silicon integral technology for MEMS microhotplate platform with newly developed technological, electrical, and electrolytic conditions for forming nanostructured porous-anodic-alumina-templated WO3 layer as the sensing material. The morphology–structure–property relationship for the nanostructured sensing layer was determined by scanning electron microscopy, X-ray diffraction, and through systematically investigating the sensor performance at various H2 concentrations (5–1000 ppm) and operating temperatures (20–350 °C). The sensors showed superior sensitivity to hydrogen gas, with the lowest detection limit ever reported for WO3 semiconductors (5 ppm), the fast response and recovery times (2–3 min), and the best sensitivity at 150 °C, which was 100 times higher than that of a reference sensor having a smooth WO3 active film. The technology developed enables high-volume, low-cost, and low-power sensor-on-a-chip solution for a hydrogen-based energy economy where the use of highly sensitive and low-power-consuming devices is encouraged.  相似文献   

11.
Though the gas sensing properties of atmospheric plasma sprayed tungsten oxide, zinc oxide, titanium oxide, tin oxide and copper oxide coatings were well investigated, reports comparing sensing characteristics of plasma sprayed sensor thick film coating with its bulk counterpart are hardly found in the literature. This work attempts to compare hydrogen and carbon monoxide sensing characteristics, namely gas response, response time, recovery time of plasma sprayed tin dioxide thick film with tin dioxide bulk sensor. Gas response in the presence of hydrogen gas (23–81%) was superior to that of carbon monoxide gas (19–79%). An attempt was made to understand plausible reason behind superior hydrogen gas response. Thus, gas response as a function of temperature was simulated using a gas diffusion equation for hydrogen and carbon monoxide gases. Estimated parameters, namely, activation energy of transduction and first order kinetics were correlated with sensor microstructure and experimental gas response values. For hydrogen sensing, shorter response time (30–138 s) and recovery time (118–161 s) of thick film as compared to response time (64–234 s) and recovery time (183–196 s) of bulk sensor was correlated with microstructure of sensory elements. It was observed that tin dioxide thick film, owing to its porous morphology with small-sized particulates exhibited superior hydrogen gas response, short response time and recovery time as compared to its bulk counterpart.  相似文献   

12.
Uniform-sized orthorhombic MoO3 nanoribbons were synthesized by a simple hydrothermal method at 240 °C. The nanoribbons grew along the [001] orientation, with average length, width and thickness of approximately 20 μm, 270 nm and 90 nm, respectively. The obtained nanoribbons were further annealed in a hydrogen atmosphere at different temperatures to modify their surface states. The treatment of the nanoribbons at 300 °C significantly elevated the concentration of non-stoichiometric Mo5+ to 24.7%, much larger than the original concentration (∼14.8%). A positive relationship was found between the non-stoichiometric Mo5+, chemisorbed oxygen ion and sensor response. The sensor based on the MoO3 nanoribbons treated at 300 °C exhibited a faster response time of approximately 10.9 s, and a higher sensor response of 17.3 towards 1000 ppm H2, compared with the results of original tests (∼21 s and ∼5.7, respectively), indicating the significantly improved gas sensing performance of the treated MoO3. Meanwhile, the sensor also exhibited excellent repeatability and selectivity toward hydrogen gas. The enhancement of the hydrogen gas sensing performance of treated MoO3 nanoribbons was attributed to the more effective adjustment of the width of the depletion region on the nanoribbon surface and the height of the potential barrier at the junctions, induced by the interaction between hydrogen molecules and higher-concentration oxygen ions. Our research implied that the gas sensing performance of nanostructured metal oxides could be successfully enhanced through annealing in the reducing gas.  相似文献   

13.
Hydrogen gas (H2) detection plays an important role in many fields. With the continuous demand and development of clean energy, it is urgent to study new hydrogen gas sensors for stable and accurate H2 detection. The purpose of this research is to develop a new H2 sensor based on the resonant photoacoustic (PA) cell as the sensing element. The sensitivity of the resonant PA cell to the resonant frequency is sufficiently utilized. The optimization of its resonance frequency was investigated minutely for the H2 sensor. Detection utilizes resonance frequency differences between H2 and air as a sensing mechanism. The resonance frequency tracking is adopted and implemented by the field-programmable gate array (FPGA) device. The minimum detection limit of about 74 ppm for H2 has been demonstrated by preliminary experiments. The response time of the sensor is about 5 s. This sensor detects concentrations ranging from 74 ppm to 100% in 1 atm. The preliminary test result shows that the H2 sensor based on this structure has a larger application perspective.  相似文献   

14.
We describe the characteristics of resistivity-type hydrogen (H2) sensors made of palladium (Pd)-graphene nanocomposites. The Pd-graphene composite was synthesized by a simple chemical route capable of large production. Synthesis of Pd nanoparticles (PdNPs) of various sizes decorated on graphene flakes were easily controlled by varying the concentration of Pd precursors. Resistivity H2 sensors were fabricated from these Pd-graphene composites and evaluated with various concentrations of H2 and interfering gases at different temperatures. Characteristics for sensitivity, selectivity, response time and operating life were studied. The results from testing the Pd-graphene indicated a potential for hydrogen sensing materials at low temperature with good sensitivity and selectivity. Specifically H2 was measurable with concentrations ranging from 1 to 1000 ppm in laboratory air, with a very low detection limit of 0.2 ppm. The response of the sensors is almost linear. The resistivity of sensors changed approximately 7% in its resistance with 1000 ppm H2 even at room temperature. The robust mechanical properties of graphene, which supported these PdNPs, exhibit structural stability and durability in H2 sensors for at least six months. Moreover, the advantages in this work are experimental reproducibility in synthesis Pd-graphene composite and sensor fabrication process.  相似文献   

15.
Highly sensitive hydrogen gas sensors were fabricated using a microelectromechanical system (MEMS) and anodic aluminum oxides (AAOs) process. MEMS based gas sensor platform was designed with the multi-layer type for Pd film morphology manipulations. The operating temperature of the micro heater was positively correlated with the heater. Hydrogen sensing response of the sensor showed a good positive linearity as the gas sensitivity increased with increasing hydrogen concentration. The hydrogen sensitivity (defined as ratio of sensor resistances in air and after the hydrogen gas injection) was 0.638% at hydrogen concentration of 2000 ppm. The H2 sensitivity was very dependent on the thickness and morphology of Pd-nanosized film. The gas sensitivity and response properties showed different behaviors when palladium film was deposited on the anodic aluminum oxide (AAO) layer. The hydrogen sensitivity for the Pd on AAO layer was about 0.783% at the hydrogen concentration of 2000 ppm. The sensitivity of the Pd-AAO layer improved with respect to the pure Pd thin film due to nanoporous nature of AAO.  相似文献   

16.
Pure and (8%)Y2O3-doped zirconium oxide commercial samples were investigated for developing a high performance conductometric hydrogen sensor. The morphological, microstructural, optical, and electrical characteristics of the samples were studied and compared. Conductometric sensors based on these samples were fabricated using a planar platform in alumina provided with interdigitated electrodes, and sensing tests were carried at different operating temperatures and hydrogen concentrations. Sensing tests revealed that the fabricated sensor based on the tetragonal ZrO2–Y2O3 (8%) showed the best performances in terms of sensor response (R0/RH2 = 7.3@10000 ppm of hydrogen), response and recovery time (5 and 10 s, respectively), and low operating temperature (150 °C). These characteristics have been exploited for developing the first hydrogen leak conductometric sensor based on ZrO2 so far reported.  相似文献   

17.
Metal oxide semiconductor gas sensors of hydrogen with a typical capacitor-like Pt/TiO2/Pt electrode arrangement exhibit excellent sensitivity to hydrogen even at room temperature. At the same time, very similar Pt/TiO2/Pt cells can also be used as memristive elements exhibiting resistive switching between two resistive states, which has been recently exploited to create a gas sensor with built-in memory. Merging of these two functionalities within a single device also opens new possibilities for smart gas sensor arrays. However, so far such sensors have been prepared only on rigid substrates. In this work, a flexible hydrogen gas sensor with such capacitor-like Pt/TiO2/Pt electrode arrangement fabricated on polyimide foil is presented and characterized in terms of hydrogen gas sensing properties and bending endurance. The sensor exhibits high response (Rair/RH2) of more than 105 to 10 000 ppm H2 at 150 °C with minor decline at elevated humidity and is capable of room temperature operation. The lowest detected concentration was 3 ppm at 150 °C and 300 ppm at room temperature in dry conditions. Bending the sensor 105 times over diameter of 10 mm led to slight improvement of the sensing performance.  相似文献   

18.
The micro-electro-mechanical system (MEMS)-based field effect transistor (FET) sensor for hydrogen detection was fabricated by modifying the gate electrode with boron nitride nanotubes (BNNTs) decorated Pd-ternary alloy (Pd63·2Ni34·3Co2.5) as a hydrogen sensing layer Electro-thermal properties of the micro-heater embedded under sensor membrane were analyzed by a finite element method (FEM) simulation. The structural and morphological properties of the gate electrode were studied by Raman spectroscopy, X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and field emission scanning electron microscopy (FESEM). A variation in gate potential is observed due to the H2 atmosphere that leads to the variation in the depletion region, therefore, changing the current in the channel (BNNTs decorated Pd-ternary alloy). The BNNTs-decorated Pd ternary alloy displayed high sensing response, fast response and recovery time for H2 gas, low power consumption, long-term stability, and wide detection range from 1 to 5000 ppm H2. The drain current of the H2 FET sensor varied significantly at hydrogen gas exposure and increased with H2 concentration. As proposed H2 FET sensor can be utilized to the H2 leak detection system for safe applications.  相似文献   

19.
In this study, porous polyaniline tube-like/TiO2 nano-heterostructure (PPTH) was prepared by a chemical oxidative polymerization to be used in H2 sensing. The surface morphology of polyaniline, the content of one-dimensional TiO2 nanostructures (1D TiO2), and the porosity of PPTH significantly affected the sensing performance of the samples. The response and response/recovery time of gas sensing for H2 were considered by morphological change of TiO2 at ambient conditions. The p-n contacts between polyaniline matrix and 1D TiO2 provided more active sites and facilitated the electrons transport, hence promoting the physisorption of gas molecules. R20 exhibited the highest sensitivity of 9.05 towards 2500 ppm of H2 gas at the respective response and recovery times of 94 and 374 s. The sensor designed based on F30 exhibited proper long-term stability after one year. The sensing mechanism of PPTH was also studied in detail.  相似文献   

20.
This paper reviews both static and dynamic characteristics of a planar-type Pd–GaN metal–semiconductor–metal (MSM) hydrogen sensor. The sensing mechanism of a metal–semiconductor (MS) hydrogen sensor was firstly reviewed to realize the sensing mechanism of the proposed sensor. Symmetrically bi-directional current–voltage characteristics associated with our sensor were indicative of easily integrating with other electrical/optical devices. In addition to the sensing current, the sensing voltage was also used as detecting signals in this work. With regard to sensing currents (sensing voltages), the proposed sensor was biased at a constant voltage (current) in a wide range of hydrogen concentration from 2.13 to 10,100 ppm H2/N2. Experimental results reveal that the proposed sensor exhibits effective barrier height variations (sensing responses) of 134 (173) and 20 mV (1) at 10,100 and 2.13 ppm H2/N2, respectively. A sensing voltage variation as large as 18 V was obtained at 10,100 ppm H2/N2, which is the highest value ever reported. If an accepted sensing voltage variation is larger than 3 (5) V, the detecting limit is 49.1 (98.9) ppm. Moreover, voltage transient response and current transient response to various hydrogen-containing gases were experimentally studied. The new finding is that the former response time is shorter than the latter one. Other dynamic measurements by switching voltage polarity and/or continuously changing hydrogen concentration were addressed, showing the proposed sensor is a good candidate for commonly used MS sensors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号