首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
In realm of renewable energy, development of an efficient and durable electrocatalyst for H2 production through electrochemical hydrogen evolution reaction (HER) is indispensable. Herein, we demonstrate a simple preparation of carbon-supported nanoporous Pd with surface coated Pt (CS–PdPt) by a simple galvanic replacement reaction (GRR). The phase purity and porosity have been confirmed by XRD, HRTEM, and N2 sorption techniques. As HER electrocatalyst, CS-PdPt showed a low overpotential of 26 mV in 0.5 M H2SO4 at current density of 10 mA cm−2, which is lower than the commercial Pt/C electrode. The CS-PdPt catalyst exhibits an overpotential of 46 mV in 1 M KOH, and 50 mV in neutral buffer (1 M PBS) at 10 mA cm−2. The CS-PdPt furnished with small Tafel values of 33, 88, and 107 mV dec−1 in acidic, alkaline, and neutral medium, respectively. Accelerated durability test at 100 mV s−1 for 1000 cycles demonstrated a negligible change in HER activity.  相似文献   

2.
In order to solve the problem of large overpotential in water electrolysis for hydrogen production, transition metal sulfides are promising bifunctional electrocatalysts for hydrogen evolution reaction/oxygen evolution reaction that can significantly reduce overpotential. In this work, Ni3S2 and amorphous MoSx nanorods directly grown on Ni foam (Ni3S2-MoSx/NF) were prepared via one-step solvothermal process, which were used as a high-efficient electrocatalyst for overall water splitting. The Ni3S2-MoSx/NF composite exhibits very low overpotentials of 65 and 312 mV to reach 10 mA cm−2 and 50 mA cm−2 in 1.0 M KOH for HER and OER, respectively. Besides, it exhibits a low Tafel slope (81 mV dec−1 for HER, 103 mV dec−1 for OER), high exchange current density (1.51 mA cm−2 for HER, 0.26 mA cm−2 for OER), and remarkable long-term cycle stability. This work provides new perspective for further the development of highly effective non-noble-metal materials in the energy field.  相似文献   

3.
Binder-free NiFe-based electrocatalyst with aligned pore channels has been prepared by freeze casting and served as a bifunctional catalytic electrode for oxygen and hydrogen evolution reaction (OER and HER). The synergistic effects between Ni and Fe result in the high electrocatalytic performance of porous NiFe electrodes. In 1.0 M KOH, porous Ni7Fe3 attains 100 mA cm−2 at an overpotential of 388 mV with a Tafel slope of 35.8 mV dec−1 for OER, and porous Ni9Fe1 exhibits a low overpotential of 347 mV at 100 mA cm−2 with a Tafel slope of 121.0 mV dec−1 for HER. The Ni9Fe1//Ni9Fe1 requires a low cell voltage of 1.69 V to deliver 10 mA cm−2 current density for overall water splitting. The excellent durability at a high current density of porous NiFe electrodes has been confirmed during OER, HER and overall water splitting. The fine electrocatalytic performances of the porous NiFe-based electrodes owing to the three-dimensionally well-connected scaffolds, aligned pore channels, and bimetallic synergy, offering excellent charge/ion transfer efficiency and sizeable active surface area. Freeze casting can be applied to design and synthesize various three-dimensionally porous non-precious metal-based electrocatalysts with controllable multiphase for energy conversion and storage.  相似文献   

4.
Electrochemical water splitting plays an important role in alternative energy studies, since it is highly efficient and environment-friendly. Accordingly, it is an ideal way of providing alternative to meet the urgent need of finding sustainable and clean energy. This study presents the fabrication of CoP attached on multilevel N-doped CNT/graphene (CoP–CNT/NG) hybrids. The multilevel carbon structure can enhance electrical conductivity efficiently and increase the reaction active area immensely. The obtained electrocatalyst exhibits great electronic conductivity (17.8 s cm−1) and HER activity with low overpotential (155 mV at 10 mA cm−2), low Tafel slope (69.1 mV dec−1) in 0.5 M H2SO4. In addition, the CoP–CNT/NG displays prominent electrochemical durability after 18 h.  相似文献   

5.
The development of highly active and low-cost catalysts for hydrogen evolution reaction (HER) is significant for the development of clean and renewable energy research. Owing to the low H adsorption free energy, molybdenum disulfide (MoS2) is regarded as a promising candidate for HER, but it shows low activity for oxygen evolution reaction (OER). Herein, graphene-supported cobalt-doped ultrathin molybdenum disulfide (Co–MoS2/rGO) was synthesized via a one-pot hydrothermal method. The obtained hybrids modified electrode exhibits a high HER catalytic activity with a low overpotential of 147 mV at the current density of 10 mA cm−2, a small Tafel slope of 49.5 mV dec−1, as well as good electrochemical stability in acidic electrolyte. Meanwhile, the catalyst shows remarkable OER activity with a low overpotential of 347 mV at 10 mA cm−2. The superior activity is ascribed not only to the high conductivity originated from the reduced graphene, but also to the synergistic effect between MoS2 and cobalt.  相似文献   

6.
Developing an efficient and inexpensive electrocatalyst is of paramount importance for realizing the green hydrogen economy through electrocatalytic water splitting. Here, we demonstrated a facile large-scale, industrially viable binder-free synthesis of Zn-doped NiS electrocatalyst on bare nickel foam (NF) through a hydrothermal technique. The present catalyst, i.e., nickel sulfide (NiS) nanosheets on nickel foam with optimized doping of Zn atom (Zn–NiS-3), displays excellent catalytic efficacy for both oxygen evolution reaction (OER) and hydrogen evolution reaction (HER). It requires an overpotential of 320 mV for OER at a current density of 50 mA cm−2 and an overpotential of 208 mV for HER at a current density of 10 mA cm−2. The water electrolyser device having Zn–NiS-3 electrocatalyst as both cathode and anode show excellent performance, requiring a cell voltage of only 1.71 V to reach a current density of 10 mA cm−2 in an alkaline media. The density functional theory (DFT) based calculations showed enhanced density of states near Fermi energy after Zn doping in NiS and attributed to the enhanced catalytic activities. Thus, the present study demonstrates that Zn–NiS-3@NF can be coined as a viable electrocatalyst for green hydrogen production.  相似文献   

7.
Developing highly active, stable and sustainable electrocatalysts for overall water splitting is of great importance to generate renewable H2 for fuel cells. Herein, we report the synthesis of electrocatalytically active, nickel foam-supported, spherical core-shell Fe-poly(tetraphenylporphyrin)/Ni-poly(tetraphenylporphyrin) microparticles (FeTPP@NiTPP/NF). We also show that FeTPP@NiTPP/NF exhibits efficient bifunctional electrocatalytic properties toward both the oxygen evolution reaction (OER) and the hydrogen evolution reaction (HER). Electrochemical tests in KOH solution (1 M) reveal that FeTPP@NiTPP/NF electrocatalyzes the OER with 100 mA cm−2 at an overpotential of 302 mV and the HER with 10 mA cm−2 at an overpotential of 170 mV. Notably also, its catalytic performance for OER is better than that of RuO2, the benchmark OER catalyst. Although its catalytic activity for HER is slightly lower than that of Pt/C (the benchmark HER electrocatalyst), it shows greater stability than the latter during the reaction. The material also exhibits electrocatalytic activity for overall water splitting reaction at a current density of 10 mA cm−2 with a cell voltage of 1.58 V, along with a good recovery property. Additionally, the work demonstrates a new synthetic strategy to an efficient, noble metal-free-coordinated covalent organic framework (COF)-based, bifunctional electrocatalyst for water splitting.  相似文献   

8.
The growing hydrogen consumption has greatly promoted the development of efficient, stable and low-cost electrocatalysts for the hydrogen evolution reaction (HER). Constructing functional nanostructures is an efficacious strategy to optimize catalytic performance. Herein, we present a feasible route to fabricate distinctive 3D grass-like cobalt phosphide nanocones clad with mini-vesicles on the hierarchically porous Ni foam, which can directly serve as a binder-free electrocatalyst with superior catalytic activity and durability in HER. Thanks to its distinctive 3D microstructure featured with favourable pore-size distribution, abundant active sites provided by mini-vesicles and rapid electron transfer with the assistance of Ni foam, the as-grown grass-like CoP/NF electrocatalyst has shown a favourable overpotential in an acidic solution with an onset overpotential of ∼35 mV, an overpotential of 71 mV at a current density of 10 mA cm−2, reduced by 60 mV in comparison with that realized by urchin-like CoP/NF nanoprickles. Moreover, it has exhibited an excellent HER activity in the alkaline medium, with an overpotential of 117 mV at 10 mA cm−2, a Tafel slope of 63.0 mV dec−1 and a long-term electrochemical durability.  相似文献   

9.
The high-efficiency non-precious metal catalysts for oxygen evolution (OER) and hydrogen evolution (HER) are of great significance to the development of renewable energy technologies. Herein, a multiple active sites CoNi-MOFs-DBD electrocatalyst modified by low temperature plasma (DBD) was successfully synthesized by converting metal hydroxyfluoride on nickel foam into a well-arranged MOFs array using vapor deposition. The as-prepared CoNi-MOFs-DBD electrode showed better HER and OER catalytic activity, super hydrophilicity, and excellent stability. In an alkaline medium, the overpotential of HER is 203 mV at 10 mA cm?2 and that of OER is 168 mV at 40 mA cm?2. When CoNi-MOFs-DBD was used as a bifunctional electrocatalyst for overall water splitting in a two-electrode system, a current density of 10 mA cm?2 can be achieved at a low voltage of 1.42 V, which shows great potential in electrocatalytic water splitting.  相似文献   

10.
Water electrolysis to generate hydrogen (H2) and oxygen (O2) was a sustainable alternative for clean energy in the future but remained challenging. Herein, we fabricated a nanoneedle-like CoP core coated by a P,N-codoped carbon shell (CoP@PNC@NF). The hierarchical structure, unique nanoneedle-like morphology, CoP core, and P,N-codoped carbon shell were responsible for the high electrocatalytic activity. Electrocatalytic tests demonstrated that CoP@PNC@NF displayed low overpotentials of 137.6 and 148.4 mV, as well as Tafel slopes of 59.89 and 56.40 mV dec−1 for hydrogen evolution reaction (HER) and oxygen evolution reaction (OER), respectively, at 10 mA cm−2 in 1.0 M KOH. The bifunctional electrocatalyst CoP@PNC@NF also exhibited a low cell voltage of 1.458 V to yield 10 mA cm−2 in the two-electrode system and could maintain the activity for 50 h. The Faradaic efficiencies of CoP@PNC@NF for both HER and OER were nearly 100%. The result outperformed the precious-metal-based electrocatalyst apparatus (RuO2||Pt/C) and other carbon-coated transition-metal phosphides (TMPs). This work paved the way for the rational design of carbon shell-coated TMPs with low energy barriers for converting and storing electrochemical energy.  相似文献   

11.
It is well proved that fabricating more defects on basal plane of layered double hydroxides (LDHs) is one of effective ways to boost the electrocatalytic performance for oxygen evolution reaction (OER). For the first time, the nickel iron LDHs (NiFe LDHs) with hierarchical morphology and abundant defects are simultaneously constructed by one-step electrodeposition (ED) strategy with easy operation, time-saving and green chemistry. Remarkably, the morphology is elaborately tailored by changing the species of doped anions which is unique. Also, the X-ray photoelectron spectroscopy (XPS) results elucidate that the Fe sites are in electron-rich state in LDHs which is revealed to enhance the catalytic activity strongly arising from the generation of oxygen vacancy. To deliver the current density of 10 mA cm−2, the optimal NiFe LDHs require the overpotential of 128, 106 mV for OER and hydrogen evolution reaction (HER), and achieve 100 mA cm−2 at the overpotential of 237, 242 mV, respectively. As a bifunctional electrocatalyst, the NiFe LDHs exhibit the current density of 10 mA cm−2 at a cell voltage of 1.55 V and 100 mA cm−2 at 1.76 V, which are lower than that of most of benchmarking materials reported previously.  相似文献   

12.
Multi-functionality is a highly desirable feature in designing new electrode material for both energy storage and conversion devices. Here, we report a well-integrated and stable β-NiMoO4 that was fabricated on three dimensional (3D) nickel foam (NF) by a simple hydrothermal approach. The obtained β-NiMoO4 with interesting honeycomb like interconnected nanosheet microstructure leads to excellent electrochemical activity. As an electrode for Supercapatteries, β-NiMoO4–NF showed a high specific capacity of 178.2 mA h g−1 (916.4 F g−1) at 5 mA cm−2 current density. Most importantly, the fabricated symmetric device exhibits a maximum specific energy of 35.8 W h kg−1 with the power output of 981.56 W kg-1 and excellent cyclic stability. In methanol electro-oxidation, the β-NiMoO4 –NF catalyst deliver the high current density of 41.8 mA cm−2 and much lower onset potential of 0.29 V with admirable long term stability. Apart from the above electrochemical activity, the β-NiMoO4 –NF honeycomb microstructure demonstrates a promising non-noble electrocatalyst for oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) and showed a considerable overpotential of 351 mV (OER) and 238 mV (HER). The attractive multifunctional electrochemical activity of β-NiMoO4–NF could be originates from their unique honeycomb micro/nano structure which can acts as an “ion reservoir” and thus leads to superior energy storage and conversion processes.  相似文献   

13.
The development of cheap, efficient, and active non-noble metal electrocatalysts for total hydrolysis of water (oxygen evolution reaction (OER) and hydrogen evolution reaction (HER)) is of great significance to promote the application of water splitting. Herein, a heterogeneous structured electrode based on FeAlCrMoV high-entropy alloy (HEA) was synthesized as a cost-effective electrocatalyst for hydrogen and oxygen evolution reactions in alkaline media. In combination of the interfacial synergistic effect and the high-entropy coordination environment, flower-like HEA/MoS2/MoP exhibited the excellent HER and OER electrocatalytic performance. It showed a low overpotential of 230 mV at the current density of 10 mA cm−2 for OER and 148 mV for HER in alkaline electrolyte, respectively. Furthermore, HEA/MoS2/MoP as both anode and cathode also exhibited an overpotential of 1.60 V for overall water splitting. This work provides a new strategy for heterogeneous structure construction and overall water splitting based on high-entropy alloys.  相似文献   

14.
Designing highly efficient and durable metal-free electro-catalysts replacing the precious (non)noble metals is crucial to the future hydrogen economy and various renewable energy conversion and storage devices. Herein, we report an efficient low-cost nanoporous activated carbon sheets (NACS) with hierarchical pore architecture from Indian Ooty Varkey (IOV) food waste for oxygen evolution (OER) and hydrogen evolution reactions (HER) by following “waste to wealth creation” strategy. Characterization of NACS carbo-catalyst reveals the presence of pyridinic-nitrogen inherited by self-doping of N from the biomass with high BET surface area (1478.0 m2 g-1). As an electrocatalyst in alkaline medium, it exhibits low-onset potential (1.36 V vs. RHE), an overpotential (η10) of 0.34 V at 10.0 mA cm−2 with a small Tafel value (43 mV dec−1), and good stability towards OER compared to Pt or Ir commercial catalysts. Tested as HER catalyst, it displays an impressive HER activity with a low-onset potential of −0.085 V (vs. RHE), and overpotential (η10) of 0.38 V at 10.0 mA cm−2 with a small Tafel slope of 85 mV dec−1.  相似文献   

15.
To develop earth-abundant and cost-effective catalysts for overall water splitting is still a major challenge. Herein, a unique “raisins-on-bread” Ni–S–P electrocatalyst with NiS and Ni2P nanoparticles embedded in amorphous Ni(OH)2 nanosheets is fabricated on Ni foam by a facile and controllable electrodeposition approach. It only requires an overpotential of 120 mV for HER and 219 mV for OER to reach the current density of 10 mA cm−2 in 1 M KOH solution. Employed as the anode and cathode, it demonstrates extraordinary electrocatalytic overall water splitting activity (cell voltage of only 1.58 V @ 10 mA cm−2) and ultra-stability (160 h @ 10 mA cm−2 or 120 h @50 mA cm−2) in alkaline media. The synergetic electronic interactions, enhanced mass and charge transfers at the heterointerfaces facilitate HER and OER processes. Combined with a silicon PV cell, this Ni–S–P bifunctional catalyst also exhibits highly efficient solar-driven water splitting with a solar-to-hydrogen conversion efficiency of 12.5%.  相似文献   

16.
The layered MoS2 nanostructures have been widely used in the electrochemical hydrogen evolution reaction (HER), but rarely applied in overall water splitting application for their ignorable oxygen evolution reaction (OER) activity. To address this issue, a novel self-standing and bifunctional electrocatalyst, consisting of Co-doped MoS2 nanosheets anchored on carbon fiber paper, has been prepared via hydrothermal method. Taking advantage of conductive substrate of carbon fiber paper, sufficient-exposed active edges of MoS2 sheets, and metallic character caused by Co-doping, our electrode exhibits high-efficient bifunctional activities for the overall water splitting in alkaline electrolyte (1 M KOH), which can produce a current density of 20 mA cm−2 at an overpotential of 197 mV for HER and 235 mV for OER.  相似文献   

17.
Hydrogen production by water-splitting has limited commercial application as substantial amount of energy is required for the favorable kinetics of the process. We present an interface engineering strategy for constructing a bifunctional electrode material for an efficient water splitting process. Designed cadmium sulphide and Prussian blue nanorods (CdS-NRs@PBNPs) heterostructures acts as bifunctional electrocatalyst improved water splitting performance, for both HER and OER. For HER, the optimized hybrid CdS-NRs@PBNPs (1:1) showed significantly a low overpotentials of 126 mV and 181 mV at current densities of 10 mA cm?2 and 20 mA cm?2 respectively. For OER it displays an overpotential of 250 mV and 316 mV at current densities of 10 mA cm?2 and 20 mA cm?2. Additionally, the CdS-NRs@PBNPs (1:1) has demonstrated long-term stability. The hybrid's enhanced OER and HER activity is attributable to a synergetic impact between CdS-NRs and PBNPs, as well as the active site modification due to the presence of Cadmium and iron in the hybrid.  相似文献   

18.
Constructing efficient bifunctional electrocatalysts for both cathode and anode is of great importance for obtaining green hydrogen by water splitting. Herein, sulfuration of hierarchical Mn-doped NiCo LDH heterostructures (Mn–NiCoS2/NF) is constructed as a bifunctional electrocatalyst for oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) via a facile hydrothermal-annealing strategy. Mn–NiCoS2/NF shows an overpotential of 310 mV at 50 mA cm−2 for OER and 100 mV at 10 mA cm−2 for HER in 1.0 M KOH. Moreover, only 1.496 V@10 mA cm−2 is required for overall water splitting by using Mn–NiCoS2/NF as catalyst dual electrodes in a two-electrode system. The excellent performance of Mn–NiCoS2/NF should be attributed to the ameliorative energy barriers of adsorption/desorption for HO/H2O through the modification of electronic structure of NiCo basal plane by Mn-doping and the acceleration of water dissociation steps via rich delocalized electron inside sulfur vacancies. The construction of hierarchical Mn–NiCoS2/NF heterostructures provides new prospects and visions into developing efficient-advanced electrocatalysts for overall water splitting.  相似文献   

19.
Searching for efficient, stable and low-cost nonprecious catalysts for oxygen and hydrogen evolution reactions (OER and HER) is highly desired in overall water splitting (OWS). Herein, presented is a nickel foam (NF)-supported MoS2/NiFeS2 heterostructure, as an efficient electrocatalyst for OER, HER and OWS. The MoS2/NiFeS2/NF catalyst achieves a 500 mA cm−2 current density at a small overpotential of 303 mV for OER, and 228 mV for HER. Assembled as an electrolyzer for OWS, such a MoS2/NiFeS2/NF heterostructure catalyst shows a quite low cell voltage (≈1.79 V) at 500 mA cm−2, which is among the best values of current non-noble metal electrocatalysts. Even at the extremely large current density of 1000 mA cm−2, the MoS2/NiFeS2/NF catalyst presents low overpotentials of 314 and 253 mV for OER and HER, respectively. Furthermore, MoS2/NiFeS2/NF shows a ceaseless durability over 25 h with almost no change in the cell voltage. The superior catalytic activity and stability at large current densities (>500 mA cm−2) far exceed the benchmark RuO2 and Pt/C catalysts. This work sheds a new light on the development of highly active and stable nonprecious electrocatalysts for industrial water electrolysis.  相似文献   

20.
A new hybrid catalyst based on Ni foam (NF) and FeSe was prepared by a facial hydrothermal method, in which Se-decorated NF was subsequently electrochemically doped by Fe. Binder-free catalyst containing electrodes were directly tested for the hydrogen and oxygen evolution reaction (HER/OER). The FeSe/NF electrode displayed an OER current density of 100 mA cm−2 at potential of 1.42 V, and a relatively small Tafel slope of 109 mV dec−1 in a 1 M KOH solution. Also, FeSe/NF electrode exhibited reasonable HER overpotential of 200 mV at 10 mAcm−2 current density with Tafel slope of 145 mV dec−1. The XRD and TEM studies revealed that the formation of heterogeneous interfaces of NiSe2 and FeSe2,generated more active sites that can promote better ions and electron transport in the electrode/electrolyte interfaces. Furthermore, HRTEM analysis indicates that FeSe2 rich in Se vacancy defects can be created with suitable M − O and M − H bond for better OER and HER performance, respectively. In a-two electrode alkaline water electrolyzer, current densities of 10 mA cm−2 and 50 mA cm−2 were obtained at cell voltages of 1.52 V and 1.85 V, respectively, using pure FeSe–NF as both the cathode and anode.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号