首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
This study aims to study the methane generation potential (BMP tests) of different samples from the dark acid fermentation of sewage sludge:wine vinasse, and sewage sludge:wine vinasse:poultry manure. Specifically, mixtures of sewage sludge (S) and wine vinasse (V) were used in a 50:50 ratio and mixtures of sewage sludge and wine vinasse with 10 g/L of poultry manure (PM) (50:50 + 10 g/L) (S:V + PM). The goal was to determine the effect of the high ammonia concentrations in poultry manure when was used as co-substrate in the anaerobic methanogenic degradation of sewage sludge and vinasse. Results obtained show that the addition of 10 g/L of poultry manure to the SV mixture improves the production of methane generation, reaching values of 166 mL of accumulated methane. The SVPM mixture shows the highest purification percentages, with 63.90% TCOD removal, 79.51% SCOD removal and a yield of 52.05 mLCH4/gSVadded. The SVPM test showed a higher concentration of microorganisms during the BMP test, although the population of microorganisms for the SV test was doubled and presented greater activity with values of 2.27 versus 1.73E-11 LCH4/Cells.  相似文献   

2.
Microbial electrochemical system (MES) was integrated into anaerobic digestion (AD) to improve the overall process efficiency by enhancing methane (CH4) production. CH4 fermentation at various glucose concentrations (2, 4, 8 and 10 g/l) was evaluated along with corresponding control (without electrodes) operations. The maximum CH4 yield of 0.34 l- CH4/g COD was obtained with both 2 and 4 g/l glucose concentrations (MES), which was about 1.4 and 2.4 times, respectively, higher than the values obtained with corresponding control operations. However, at 10 g/l, similar performance (∼0.07 l- CH4/g COD) was observed with both control and MES operations, which might be due to pH drop occurred by volatile fatty acids (VFAs) buildup in the process. Substrate removal was amplified in the presence of MES with faster degradation of VFAs at all substrate concentrations except 10 g/l. This enhanced utilization of VFAs in the MES process is an important aspect to recover from initial pH drops, especially at higher substrate concentration to maintain the optimum pH for methane fermentation. The current generation and cyclic voltammetric profiles suggest that the enhanced CH4 production in MES was attributed to the bioelectrochemical reactions on the electrodes.  相似文献   

3.
Batch production of biohydrogen from cassava wastewater pretreated with (i) sonication, (ii) OPTIMASH BG® (enzyme), and (iii) α-amylase (enzyme) were investigated using anaerobic seed sludge subjected to heat pretreatment at 105 °C for 90 min. Hydrogen yield at pH 7.0 for cassava wastewater pretreated with sonication for 45 min using anaerobic seed sludge was 0.913 mol H2/g COD. Results from pretreatment with OPTIMASH BG® at 0.20% and pH 7 showed a hydrogen yield of 4.24 mol H2/g COD. Superior results were obtained when the wastewater was pretreated with α-amylase at 0.20% at pH 7 with a hydrogen yield of 5.02 mol H2/g COD. In all cases, no methane production was observed when using heat-treated sludge as seed inoculum. Percentage COD removal was found to be highest (60%) using α-amylase as pretreatment followed by OPTIMASH BG® at 54% and sonication (40% reduction rate). Results further suggested that cassava wastewater is one of the potential sources of renewable biomass to produce hydrogen.  相似文献   

4.
Sugarcane leaves and tops are lignocellulosic agricultural by-products which are considered a significant input for biogas production. Their potential pretreatment by sodium hydroxide prior to co-digestion with cow manure helps increase the methane (CH4) content, biodegradation efficiency of the lignocellulosic materials and CH4 yield. The untreated and pretreated sugarcane leaves and tops to cow manure and water of different ratios were digested and co-digested in the 5 L reactors by semi-continuous operation with hydraulic retention time of 40 days. The pretreated sugarcane leaves and tops to cow manure at the initial prepared ratio of 100 g:100 g, in 800 mL water which was corresponding to the organic loading rate (OLR) of 0.61 kg COD/m3·day was recommended. At this ratio, the chemical oxygen demand and total volatile solids degradation efficiency was 68.80 and 72.52%, respectively, the CH4 content was 44.52% and the CH4 yield was 331 L/kg COD degraded. According to the results, there is an average of 3.7% deviation between the practical model based on the thermodynamic balance equations carried out using the Aspen Plus and the experimental study. The highest exergy destruction rate is found at 21 kW where the sugarcane leaves and tops, and cow manure ratio is 100 g:100 g, in 800 mL water. The highest energy and exergy efficiencies of the overall system are calculated as 45.53% and 46.02%, respectively.  相似文献   

5.
Cellulosic materials-based de-oiled Jatropha Waste (DJW) was fermented to H2 and CH4 using sewage sludge inoculum. Batch assays were performed at various substrate concentrations (40–240 g/L), temperatures (25–65 °C) and pHs (5.5–7.5). The peak hydrogen production rate (HPR) and hydrogen yield (HY) of 744.0 ± 11.3 mL H2/L-d and 10.6 ± 0.2 mL H2/g VS obtained when the optimal substrate concentration, pH, temperature were 200 g/L, 6.5, 55 °C, respectively. The peak methane production rate (MPR) of 178.4 ± 5.6 mL CH4/L-d obtained while DJW concentration, pH, temperature were 200 g/L, 7.0, 45 °C, however, peak methane yield (MY) of 23.3 ± 0.1 mL CH4/g VS obtained at 40 g/L, 7.0 and 55 °C, respectively. Effect of substrate concentration on HPR and MPR was elucidated using Monod model. Butyrate and acetate were the main soluble metabolic products. Maximal carbohydrate removal and COD reduction were achieved as 51.7 ± 0.7% and 68.3 ± 1.6%, respectively.  相似文献   

6.
Anaerobic dark fermentation is considered a promising technology for clean energy production and waste reduction. In the present work, tofu residue and sewage sludge were utilized as substrates for fermentative hydrogen production. To increase the biodegradability, tofu residue was pretreated for 30 min in the presence of HCl and NaOH at various concentrations (0, 0.5, 1.0, and 2.0%), and then fermented by a thermophilic (60 °C) mixed culture. The solubility (SCOD/TCOD ratio) of the tofu residue increased from 4 to 30–40% after pretreatment, and the increased soluble constituents were mainly protein rather than carbohydrate compounds. However, in spite of a slight increase of carbohydrate solubility, the H2 production performance was significantly enhanced by pretreatment, owing to the degradability of thermophilic cultures used on insoluble tofu residues. The limited H2 yield of 0.30 mol H2/mol hexoseadded achieved in the raw tofu residue was increased 1.6- to 4-fold with the highest H2 yield of 1.25 mol H2/mol hexoseadded at 1.0% HCl concentration. Carbohydrate degradation and the H2 production rate also increased from 39 to 50–65% and 27 to 50–120 mL H2/L/h, respectively. The role of pretreatment was not only to increase the biodegradability but also to suppress the activity of indigenous non H2-producers such as lactic acid bacteria and propionic acid bacteria. When sewage sludge was added to acid pretreated (1.0% HCl) tofu residue as a co-substrate, the H2 yield and H2 production rate increased to 1.48 mol H2/mol hexoseadded and 161 mL H2/L/h, respectively, which was attributed to the abundant minerals, vitamins, and metals contained in sewage sludge.  相似文献   

7.
厨余和污泥不同混合比例碱处理产氢特性研究   总被引:1,自引:0,他引:1  
以厨余垃圾和污泥为反应底物,加热预处理的污泥为发酵接种物,考察了碱处理下厨余与污泥不同混合比例的发酵产氢特性。结果表明:不同pH碱液对厨余垃圾进行预处理后,其效果以pH=13时最佳,预处理3h后SCOD和还原糖含量分别为31316.8mg/L和5.54mg/mL;碱预处理后的污泥与厨余联合发酵能够改善物料的营养平衡,缩短反应延迟时间到1h内;当厨余与污泥混和比例为5:1时为本试验最佳的试验条件,其氢气含量、比产氢速率峰值和氢产率分别为52.69%,1.73mL H_2/(h·gVS)和50.27mL H_2/gVS。  相似文献   

8.
The feasibility of producing hydrogen and methane via a two-stage fermentation of tequila vinasses was evaluated in sequencing batch (SBR) and up-flow anaerobic sludge blanket (UASB) reactors. Different vinasses concentrations ranging from 500 mg COD/L to 16 g COD/L were studied in SBR by using thermally pre-treated anaerobic sludge as inoculum for hydrogen production. Peak volumetric hydrogen production rate and specific hydrogen production were attained as 57.4 ± 4.0 mL H2/L-h and 918 ± 63 mL H2/gVSS-d, at the substrate concentration of 16 g COD/L and 6 h of hydraulic retention time (HRT). Increasing substrate concentration has no effect on the specific hydrogen production rate. The fermentation effluent was used for methane production in an UASB reactor. The higher methane composition in the biogas was achieved as 68% at an influent concentration of 1636 mg COD/L. Peak methane volumetric, specific production rates and yield were attained as 11.7 ± 0.7 mL CH4/L-h, 7.2 ± 0.4 mL CH4/g COD-h and 257.9 ± 13.8 mL CH4/g COD at 24 h-HRT and a substrate concentration of 1636 mg COD/L. An overall organic matter removal (SBR + UASB) in this two-stage process of 73–75% was achieved.  相似文献   

9.
Two-stage anaerobic digestion of heating pretreated waste sludge was conducted to evaluate the ability of biogas production and the changing of soluble chemical oxygen demand (SCOD), carbohydrate and protein in extracellular polymeric substances (EPS) and dissolved organic matters (DOM). The changes of volatile fatty acids (VFAs) and NH4+-N were analyzed. The duration of hydrogen production was 1 day and that of the methane production was 10 days. The highest hydrogen yield of 5.5 ml H2/g VSS and methane yield of 62.1 ml CH4/g VSS were obtained. The VSS removal of two-stage anaerobic digestion was 40%. Carbohydrate was the main substrate for hydrogen production and protein in DOM was the main sources for methane production. The structural and functional properties of organics in DOM were evaluated by using three-dimensional excitation-emission matrix (3D-EEM) fluorescence spectroscopy with fluorescence regional integration (FRI) analysis. Moreover, the humification index (HIX) and the fluorescence index (FI) were used to evaluate the humification and DOM source.  相似文献   

10.
Methane (CH4) production from palm oil mill effluent (POME) pre-treated by ozonation was conducted under mesophilic (37 °C) condition. The results demonstrated that methane can be produced from both non-ozonated and ozonated POME at a concentration range of 3,000 to 15,000 mg COD L−1. Methane yield rised 54% when POME was pre-treated by ozonation at POME concentration of 15,000 mg COD L−1. The methane yield increased the POME concentration was increased. At POME above 15,000 mg COD L−1, the methane yield was dropped dramatically. The methane production rates (Rmax) and yields exerted similar trend regarding the POME concentration. Accumulation of volatile fatty acids in the reactor posed the drop of methane production. Ozonation pretreatment process of POME can improve the biodegradability of the complex organic matter in POME and enhanced methane yield and rate at POME concentration range of 3,000–15,000 mg COD L−1.  相似文献   

11.
This study investigates enhancing the biogas production of sunnhemp by pretreatment, before the anaerobic digestion and co-digestion processes, to address the complex and recalcitrant structure of the plant. Fresh sunnhemp harvested at a cutting interval of 50 days is used in the study. Five systems (each with a 5 litre useable volume) are operated semi-continuously with five different ratios of the feedstock by feeding separate feedstocks every five days with a hydraulic retention time (HRT) of 40 days. The system operates at room temperature (30 °C). The study uses sunnhemp as 20% of the feedstock and also considers sunnhemp mixed with cow manure at different ratios, with the weighed sunnhemp being pretreated with dilute sodium hydroxide. Pretreatment of sunnhemp before digestion produces a methane (CH4) yield 89% greater than that of the untreated sunnhemp. It requires 3.597 kg of dry sunnhemp to produce 1 m3 of CH4 and the annual CH4 yield per hectare is 19,015 m3. In the pretreatment of sunnhemp before co-digestion, the increased CH4 yield depends on the amount of pretreated sunnhemp in the feedstocks. However, the %CH4, the CH4 production level and the system stability depend on the optimal ratio of the sunnhemp to cow manure. The initially prepared sunnhemp to cow manure ratio is recommended at 10 g:10 g in 80 mL of water. At this ratio, the %CH4 and the CH4 yield are 53.84% and 313 kg chemical oxygen demand (COD) removed, respectively, and the COD removal efficiency is 56.4%. Sunnhemp has high potential and it is worth pretreating before producing biogas. Using sunnhemp to produce biogas is recommended to decrease greenhouse gas emissions and mitigate global warming.  相似文献   

12.
Microbial electrochemical system (MES) for enhancing methane production has gained significant interest during the recent years, but the practical applications of MES are still far away due to several limitations such as low efficiency of cathodic electrochemical kinetics. In this study, novel porous reduced-graphene oxide/hollow titania (rGO/TiO2) was successfully synthesized to be used as cathode catalyst for promoting electrochemical reduction of CO2 to methane. The MES operation with rGO/TiO2 catalyst exhibited 15.4% higher methane yield (0.383 ± 0.01 LCH4/gCOD) and 13.4% higher production rate (152.38 mL/L.d) compared to control MES with bare carbon cloth cathode. The MES-rGO/TiO2 produced around 33% higher in total Coulomb at 3837.9 ± 351.5C compared to the pristine cathode at 2887.92 ± 254.6C. Substrate degradation and volatile fatty acids conversion were significantly improved in the presence of rGO/TiO2 catalyst. By using cyclic voltammetry and electrochemical impedance spectroscopy analysis, rGO/TiO2 was proved to ease the electron transfer efficiency of working cathode for the conversion of electron to methane. The results suggest that porous rGO/TiO2 can be a promising cathode catalyst to upgrade the performance of a scalable methane-producing MES-AD system.  相似文献   

13.
In this study, a two-stage biohythane production system was used to treat swine manure to solve the high Chemical Oxygen Demand (COD) concentration and verify the total energy recovery between the two-stage and a traditional single-stage system. Experiments were carried out in single-stage methane production, two-stage biohythane production in long Hydraulic Retention Time (HRT), and short HRT. The COD removal efficiency and energy recovery were finally compared between single-stage (CH4 fermenter) and two-stage (H2+ CH4 fermenter) systems. The results showed that the methane production rate of 53.2 ± 2.7 mL/d.L, the COD removal efficiency of 29.6 ± 5.8%, and total energy recovery of 2.9 ± 0.1 kJ/L.d was obtained in the single-stage of methane production system with HRT 11.08 d, pH 7, and temperature 55 °C, respectively. In the two-stage of hydrogen and methane productions system, the hydrogen production rate of 1.8 ± 0.7 mL/d.L, the methane production rate of 65.7 ± 2.5 mL/d.L, the COD removal rate was 97.8 ± 1.7%, and the total energy recovery of 3.6 ± 0.1 kJ/L.d was obtained and stabilized when the sugary wastewater content gradually reduced to 0%. This study shows that the methane production rate increases 20%, COD removal efficiency increases to 97.8 ± 1.7%, and total energy recovery increases 30%. At the same time, the single-stage (CH4 fermenter) switched to a two-stage (H2+ CH4 fermenter) system. The two-stage anaerobic biohythane production system successfully treated the high organic swine manure and obtained a higher energy recovery against the traditional single-stage of the biomethane production system.  相似文献   

14.
Activated sludge (AS) from wastewater treatment plant of brewery industry was used as substrate for hydrogen production by anaerobic mixed cultures in batch fermentation process. The AS (10% TS) was pretreated by acid, heat and combined acid and heat. Combined acid- heat treatment (0.5% (w/v) HCl, 110 °C, 60 min) gave the highest soluble COD (sCOD) of 1785.6 ± 27.1 mg/L with the highest soluble protein and carbohydrate of 8.1 ± 0.1 and 38.5 ± 0.8 mg/L, respectively. After the pretreatment, the pretreated sludge was used to produce hydrogen by heat treated upflow anaerobic sludge blanket (UASB) granules. A maximum hydrogen production potential of 481 mL H2/L was achieved from the AS pretreated with acid (0.5% (w/v) HCl) for 6 h.  相似文献   

15.
This study aims to produce hydrogen from sludge of poultry slaughterhouse wastewater treatment plant (5% total solid) by anaerobic batch fermentation with Enterobactor aerogenes or mixed cultures from hot spring sediment as the inoculums. Sludge was heated in microwave at 850 W for 3 min. Results indicated that a soluble chemical oxygen demand (sCOD) of pretreated sludge was higher than that of raw sludge. Pretreated sludge inoculated with E. aerogenes and supplemented with the Endo nutrient had a higher hydrogen yield (12.77 mL H2/g tCOD) than the raw sludge (0.18 mL H2/g tCOD). When considered the hydrogen yield, the optimum initial pH for hydrogen production from microwave pretreated sludge was 5.5 giving the maximum value of 12.77 mL H2/g tCOD. However, when considered the hydrogen production rate (Rm), the optimum pH for hydrogen production would be 9.0 with the maximum Rm of 22.80 mL H2/L sludge·h.  相似文献   

16.
The short-chain fatty acids (SCFAs) accumulated in waste activated sludge (WAS) fermentation was adopted as an alternative extra carbon source for biohydrogen production in microbial electrolysis cells (MECs). WAS was pretreated by bi-frequency ultrasonic and the highest SCFAs were accumulated at 3rd day. Three groups of tests were conducted in single chamber MECs for H2 production under different SCOD concentrations. SCOD removals were up to 60% at diluted influent, but reduced to 50% at original concentration. Highest H2 yield was 1.2 mL H2/mg COD at 2-fold dilution with 155% energy efficiency. Results showed that >90% of acetate and ∼90% of propionate were effectively converted to hydrogen, and next were n-butyrate and n-valerate (at dilutions), but <20% of iso-butyrate and iso-valerate were converted. The overall biohydrogen recovery in this study was 120 ml H2/g VSS/d. This work shows a possibility of cascade utilization of WAS fermentation liquid and H2 generation in MEC.  相似文献   

17.
Buffalo grass and alkaline-pretreated buffalo grass samples were co-digested with cow manure separately to generate biogas in anaerobic reactors. The study considered a solid content of 20% (10% buffalo grass and 10% cow manure). The methane (CH4) content and CH4 yield of the distinct experiments were compared. For the untreated buffalo grass, the weighed buffalo grass was mixed with cow manure and water. For the alkaline-pretreated buffalo grass, the weighed buffalo grass was soaked in 1% sodium hydroxide for 1 day prior to being mixed with cow manure and water. The untreated and pretreated buffalo grass-manure were fed semi-continuously at the rate of 125 mL/day for five days feeding in a 5 L reactor, with 40 days hydraulic retention time. The experiments were conducted for approximately 100 days. Results were reported when the systems were in steady-state conditions. The chemical oxygen demand (COD) conversion efficiency of co-digestion of the untreated and pretreated buffalo grass-manure were 46.21 and 62.76%, respectively, and for the total volatile solids (TVS) were 68.50 and 71.80%, respectively. The CH4 contents generated from co-digestion of the untreated and pretreated buffalo grass-manure were 48.32% and 50.36%, respectively. The CH4 yields generated from co-digestion of the untreated and pretreated buffalo grass-manure were 328 and 385 L/kgTVS conversion, respectively. It was observed from the experiments that pretreatment of the buffalo grass prior to co-digestion provided system stability during biogas production.  相似文献   

18.
The present work aimed at establishing an efficient degradation and energy recovery system form sugarcane bagasse (SCB) through hydrogen peroxide-acetic acid (HPAC) pretreatment, thermophilic hydrogen production and mesophilic methane production. The degradation ratio of HPAC pretreated SCB (HPAC-SCB, 2%, w/v) exceeded 90% under the biological hydrolysis of C. thermocellum without enzyme addition. The hydrogen yield in the co-culture fermentation of T. thermosaccharolyticum and C. thermocellum from HPAC-SCB (2%, w/v) reached 226 mL/g substrate. The long-term hydrogen fermentation was successfully established with 1.59 L/(L·d), 0.159 L/g substrate for average hydrogen productivity and yield, respectively. Methane production of 0.341 L/g COD (chemical oxygen demand)added was recovered by semi-continuous methane fermentation from hydrogen-producing effluent at 12 days of hydraulic retention time (HRT). Average energy recovery of 8.79 MJ/kg SCB was obtained under the optimal conditions. The present work indicated the promising application of the established process in valorization of lignocellulosic bio-waste.  相似文献   

19.
In this study, a two-stage fermentation system to produce H2 and CH4 from Laminaria japonica was developed. In the first stage (dark fermentative H2 production, DFHP), response surface methodology (RSM) with a Box-Behnken design (BBD) was applied for optimization of operational parameters, including cycle-frequency, HRT, and substrate concentration, using an intermittent-continuously stirred tank reactor (i-CSTR). Overall performance revealed that the degree of importance of the three variables in terms of H2 yield is as follows: cycle-frequency > substrate concentration > HRT. In the confirmation test, H2 yield of 113.1 mL H2/g dry cell weight (dcw) was recorded, corresponding with 96.3% of the predicted response value under desirable operational conditions (cycle-frequency of 17 hr, HRT of 2.7 days, and substrate concentration of 31.1 g COD/L). In the second stage, an anaerobic sequencing batch reactor (ASBR) and an up-flow anaerobic sludge blanket reactor (UASBr) were employed for CH4 production from H2 fermented solid state (HFSS) and H2 fermented liquid state (HFLS), respectively. The CH4 producing ASBR and UASBr showed a stable CH4 yield and COD removal until a HRT of 12 days and OLR of 3.5 g COD/L/d, respectively. Subsequently, for recycling of CH4 fermented effluent from the UASBr (MFEUASBr) as diluting water in DFHP, the tap water and MFEUASBr mixing ratio (T/M ratio) was optimized (a T/M ratio of 5:5) in a batch test using heat pretreated MFEUASBr at 90 °C for 20 min, resulting in the best performance. Although slight decreases of H2 yield (7.6%) and H2 production rate (3.5%) were recorded, 100% reduction of alkali addition was possible, indicating potential to maximize economic benefits. However, a drastic decrease of H2 productivity and a change of liquid-state metabolites were observed with the use of non-heat pretreated MFEUASBr. These results coincided with those of the microbial analysis, where non-H2 producing bacteria, such as Selenomonas sp., were detected. The results indicate that pretreatment of MFEUASBr may be required in order to recycle it in DFHP.  相似文献   

20.
Wheat straw is an abundant, cheap substrate that can be used for methane production. However, the nutrient content in straw is inadequate for methane fermentation. In this study, recycling digestate liquor was implemented in single-stage continuous stirred tank processes for enrichment of the nutrient content of straw with the aim of improving the methane production. The VS-based organic loading rate was set at 2 g/(L d) and the solid retention time at 40 days. When wheat straw alone was used as the substrate, the methane yields achieved with digestate liquor recycling was on average 240 ml CH4/g VS giving a 21% improvement over the processes without recycling. However, over time, the processes suffered from declining methane yields and poor stability evidenced by low pH. To maintain process stability, wheat straw was co-digested with sewage sludge or supplemented with macronutrients (nitrogen and phosphorous). As a result, the processes with digestate liquor recycling could be operated stably, achieving methane yields ranging from 288 to 296 ml CH4/g VS. Besides, the processes could not be operated sturdily with supplementation of macronutrients without digestate liquor recycling. The highest methane yield (296 ± 16 ml CH4/g VS) was achieved by co-digestion with sewage sludge plus recycling of digestate liquor after filtration (retention of nutrients and microorganisms). This was comparable to the maximum expected methane yield of 293 ± 13 ml CH4/g VS achieved in batch test. The present study therefore demonstrated that digestate liquor recycling could lead to a decreased dilution of vital nutrients from the reactors thereby rendering high process performance and stability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号