首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A type of sulfonated covalent organic framework nanosheets (TpPa-SO3H) was synthesized via interfacial polymerization and incorporated into sulfonated poly (ether ether ketone) (SPEEK) matrix to prepare proton exchange membranes (PEMs). The densely and orderly arranged sulfonic acid groups in the rigid skeleton of the TpPa-SO3H nanosheets, together with their high-aspect-ratio and well-defined porous structure provide proton-conducting highways in the membrane. The doping of TpPa-SO3H nanosheets led to an increased ion exchange capacity up to 2.34 mmol g?1 but a 2-folds reduced swelling ratio, remarkably mitigating the trade-off between high IEC and excessive swelling ratio. Based on the high IEC and orderly arranged proton-conducting sites, the SPEEK/TpPa–SO3H–5 membrane exhibited the maximum proton conductivity of 0.346 S cm?1 at 80 °C, 1.91-folds higher than the pristine SPEEK membrane. The mechanical strength of the composite membrane was also improved by 2.05-folds–74.5 MPa. The single H2/O2 fuel cell using the SPEEK/TpPa–SO3H–5 membrane presented favorable performance with an open voltage of 1.01 V and a power density of 86.54 mW cm?2.  相似文献   

2.
The development of hydrocarbon polymer electrolyte membranes with high proton conductivities and good stability as alternatives to perfluorosulfonic acid membranes is an ongoing research effort. A facile and effective thermal crosslinking method was carried out on the blended sulfonated poly (ether ether ketone)/poly (aryl ether sulfone) (SPEEK/SPAES) system. Two SPEEK polymers with ion exchange capacities (IECs) of 1.6 and 2.0 mmol g?1 and one SPAES polymer (2.0 mmol g?1) were selected to create different blends. The effect of thermal crosslinking on the fundamental properties of the membranes, especially their physicochemical stability and electrochemical performance, were investigated in detail. The homogeneous and flexible thermally-crosslinked SPEEK/SPAES membranes displayed excellent mechanical toughness (27–46 Mpa), suitable water uptake (<60%), high dimensional stability (swelling ratio < 15%) and large proton conductivity (>120 mS cm?1) at 80 °C. The thermal crosslinking membranes also show significantly enhanced hydrolytic (<2.5%) and oxidative stability (<2%). Fuel cell with t-SPEEK/SPAES (1:2:2) membrane achieves a power density of 665 mW cm?2 at 80 °C.  相似文献   

3.
A novel proton exchange membrane was synthesized by embedding a crystalline which was nano-assembled through trimesic acid and melamine (TMA·M) into the matrix of the sulfonated poly (ether ether ketone) (SPEEK) to enhance the proton conductivity of the SPEEK membrane. Fourier transform infrared indicated that hydrogen bonds existed between SPEEK and TMA·M. XRD and SEM indicated that TMA·M was uniformly distributed within the matrix of SPEEK, and no phase separation occurred. Thermogravimetric analysis showed that this membrane could be applied as high temperature proton exchange membrane until 250 °C. The dimensional stability and mechanical properties of the composite membranes showed that the performance of the composite membranes is superior to that of the pristine SPEEK. Since TMA·M had a highly ordered nanostructure, and contained lots of hydrogen bonds and water molecules, the proton conductivity of the SPEEK/TMA·M-20% reached 0.00513 S cm−1 at 25 °C and relative humidity 100%, which was 3 times more than the pristine SPEEK membrane, and achieved 0.00994 S cm−1 at 120 °C.  相似文献   

4.
Sulfonated titania submicrospheres (TiO2-SO3H) prepared through a facile chelation method are incorporated into sulfonated poly(ether ether ketone) (SPEEK) to fabricate organic-inorganic hybrid membranes with enhanced proton conductivity and reduced methanol permeability for potential use in direct methanol fuel cells (DMFCs). The pristine titania submicrospheres (TiO2) with a uniform particle size are synthesized through a modified sol-gel method and sulfonated using 4,5-dihydroxy-1,3-benzenedisulfonic acid disodium salt as the sulfonation reagent. The sulfonation process is confirmed by Fourier transform infrared spectroscopy (FTIR) and X-ray photoelectron spectra (XPS). The hybrid membranes are systematically characterized in terms of thermal property, mechanical property, ionic exchange capacity (IEC), swelling behavior, and microstructural features. The methanol barrier property and the proton conductivity of the SPEEK/TiO2-SO3H hybrid membranes are evaluated. The presence of the fillers reduces methanol crossover through the membrane. Compared with the unsulfonated TiO2-doped membranes, the TiO2-SO3H-doped ones exhibit higher proton conductivity due to the additional sulfonic acid groups on the surface of TiO2. The hybrid membrane doped with 15 wt.% TiO2-SO3H submicrospheres exhibits an acceptable proton conductivity of 0.053 S cm−1 and a reduced methanol permeability of 4.19 × 10−7 cm2 s−1.  相似文献   

5.
We report an effective and facile approach to enhance the dimensional and chemical stability of sulfonated poly(ether ether ketone) (SPEEK) type proton exchange membranes through simple polymer blending for fuel cell applications, using commercial available materials. The polymeric blends with sulfonated poly(aryl ether sulfone)s (SPAES) were simply fabricated by a three-component system, which contained SPEEK (10–50 wt%, 1.83 mmol/g), and SPAES-40 (1.72 mmol/g)/SPAES-50 (2.04 mmol/g) at 1:1 in weight. The SPAES-40 was selected for mechanical and dimensional stability reinforcing, while SPAES-50 for the good polymer compatibility. The obtained SPEEK/SPAES blend membranes showed depressed water uptake, better dimensional and oxidative stability, together with higher proton conductivity beyond 70 °C than the pristine SPEEK membrane. The apparent improvements in membrane properties were associated with the homogeneous dispersion of SPEEK and both SPAES copolymers inside the membranes as well as the rearrangements of the polymeric chains. The SPEEK content should be properly controlled in the range of 10–40% (B10 to B40). In a H2/O2 fuel cell test, B30 showed a maximum power density of 700 mW/cm2, which was 1.6 times as high as that of B40 at 80 °C under 100% RH. The further cross-linking treatment produced more ductile and enduring blend membranes, indicating an appreciable prospective for fuel cell applications.  相似文献   

6.
Nanocomposite membranes of sulfonated polyether ether ketone (sPEEK) are prepared with polyaminobenzene sulfonic acid grafted single-walled carbon nanotubes copolymer (PABS-SWCNT) and its zwitterion interactions are studied. The nanocomposite membranes are prepared through solution cast technique using PABS-SWCNT as additive in different weight % (0.1, 0.15, and 0.2) ratio. The additive and nanocomposite membranes are characterized for its surface morphology, composition, thermal and physico-chemical properties. The nanocomposite membrane comprising optimized content of PABS-SWCNT (0.15 wt %) shows improved proton conductivity and reduced methanol crossover resulting in enhanced DMFC peak power density of 150 mW cm−2 in comparison to 110 mW cm−2 for sPEEK and 80 mW cm−2 for Nafion® 117 respectively. The improved durability till 100 h for sPEEK/PABS-SWCNT (0.15 wt %) compared to sPEEK and Nafion-117 confirms its viability in DMFC application.  相似文献   

7.
Custom-made proton exchange membranes (PEM) are synthesized by incorporating sulfonated poly(ether ether ketone) (SPEEK) in poly(ether sulfone) (PES) for electricity generation in microbial fuel cells (MFCs). The composite PES/SPEEK membranes at various composition of SPEEK are prepared by the phase inversion method. The membranes are characterized by measuring roughness, proton conductivity, oxygen diffusion, water crossover and electrochemical impedance. The conductivity of hydrophobic PES membrane increases when a small amount (3–5%) of hydrophilic SPEEK is added. The electrochemical impedance spectra shows that the conductivity and capacitance of PES/SPEEK composite membranes during MFC operation are reduced from 6.15 × 10−7 to 6.93 × 10−5 (3197 Ω–162 Ω) and from 3.00 × 10−7 to 1.56 × 10−3 F, respectively when 5% of SPEEK added into PES membrane. The PES/SPEEK 5% membrane has the highest performance compared to other membranes with a maximum power density of 170 mW m−2 at the maximum current density of 340 mA m−2. However, the interfacial reaction between the membrane and the cathode with Pt catalyst indicates moderate reaction efficiency compared to other membranes. The COD removal efficiency of MFCs with composite membrane PES/SPEEK 5% is nearly 26-fold and 2-fold higher than that of MFCs with Nafion 112 and Nafion 117 membranes respectively. The results suggest that the PES/SPEEK composite membrane is a promising alternative to the costly perfluorosulfonate membranes presently used as separators in MFC systems.  相似文献   

8.
A series of sulfonated poly(arylene ether sulfone) block copolymers with aliphatic chains (SPAES-LA) to lend structural flexibility in the polymer backbone have been synthesized to prepare proton exchange membranes (PEMs) showing improved electrochemical performance and dimensional/oxidative stabilities. The SPAES-LAs, bearing different hydrophilic/hydrophobic segment lengths, are prepared via polycondensation and sulfonation reactions. The sulfonation reaction occurs in specific fluorenylidene units by using chlorosulfonic acid. The SPAES-LA membrane, fabricated by solvent casting method, exhibits remarkable dimensional/thermal stabilities. Moreover, proton conductivity of as-prepared SPAES-LA membranes demonstrates significant improvement with expansion of ion clusters which is due to the increased hydrophilic volume ratio. In particular, the SPAES-LA-X12Y28 membrane exhibited heightened proton conductivity of 158.4 mS cm−1 as well as suitable dimensional stability and durability towards radical oxidation, due to an effective well-defined hydrophilic-hydrophobic interface. Furthermore, H2/O2 fuel cell performance using SPAES-LA-X12Y28 membrane achieves a maximum power density of 232.02 mW cm−2, a result which points out that SPAES-LA membranes show great potential for applications of polymer electrolyte membrane.  相似文献   

9.
The proton exchange membrane (PEM) was synthesized using polyethersulfone (PES), sulfonated poly (ether ether ketone) (SPEEK) and nanoparticles. The metal oxide nanoparticles such as Fe3O4, TiO2 and MoO3 were added individually to the polymer blend (PES and SPEEK). The polymer composite membranes exhibit excellent features regarding water uptake, ion exchange capacity and proton conductivity than the pristine PES membrane. Since the presence of sulfonic acid groups provides by added SPEEK and the unique properties of inorganic nanoparticles (Fe3O4, TiO2 and MoO3) helps to interconnect the ionic domain by the absorption of more water molecules thereby enhance the conductivity value. The proton conductivity of PES, SPEEK, PES/SPEEK/Fe3O4, PES/SPEEK/TiO2 and PES/SPEEK/MoO3 membranes were 0.22 × 10?4 S/cm, 5.18 × 10?4 S/cm, 3.57 × 10?4 S/cm, 4.57 × 10?4 S/cm and 2.67 × 10?4 S/cm respectively. Even though the blending of PES with SPEEK has reduced the conductivity value to a lesser extent, hydrophobic PES has vital role in reducing the solvent uptake, swelling ratio and improves hydrolytic stability. Glass transition temperature (Tg) of the membranes were determined from DSC thermogram and it satisfies the operating condition of fuel cell system which guarantees the thermal stability of the membrane for fuel cell application.  相似文献   

10.
In this paper, the blend membranes based on sulfonated poly(ether ether ketone) and sulfonated cyclodextrin as the proton conducting membranes for DMFCs usage are prepared and investigated. The incorporation of sulfonated cyclodextrin in SPEEK membranes is evaluated by the characteristic absorptions of FT-IR spectra. Thermal stability and micro-morphology of the blend membranes are determined by thermogravimetry analysis and scanning electron microscope tests. The properties of the blend membranes are investigated such as swelling behavior, methanol permeability and proton conduction as function of the fraction of sulfonated cyclodextrin. The methanol crossover could be suppressed by the incorporation of sulfonated cyclodextrin and the methanol permeability decreases when the methanol concentration increases from 2.5 M to 20 M. Proton conduction is also promoted by the introduction of sulfonated cyclodextrin and the proton conductivity increases with the increase of sulfonated cyclodextrin content. The calculated activation energy for proton conduction of the blend membranes is very low and the maximum value is 4.20 kJ mol−1, which is much lower than that of Nafion 115 (9.15 kJ mol−1, measured in our experiments). These data indicate that proton can transport easily through the blend membranes. The selectivity of the blend membranes, a compromise between proton conductivity and methanol permeability, is much higher than that of Nafion 115 at the sulfonated cyclodextrin content above 15 wt.%. The blend membranes with 15, 20, and 25 wt.% of sulfonated cyclodextrin are assembled in the practical DMFCs and their polarization curves with 2.5 M and 8.0 M methanol solution are determined, respectively. The membrane with 20 wt.% sulfonated cyclodextrin reaches the highest power density of 29.52 mW cm−2 at 120 mA cm−2 and 8.0 M methanol solution. These results suggest the potential usage of the SPEEK membranes incorporating with sulfonated cyclodextrin in DMFCs.  相似文献   

11.
The recent studies focused on the blend membranes to a great extent due to their capability of gathering some important polymer characteristic features. In this survey, boron phosphate (BP) doped sulfonated poly (ether ether ketone)/Poly (vinylidene fluoride) (SPEEK/PVDF) blend membrane having high ionic conduction capability was synthesized. The boron phosphate doping to the membrane matrix enhanced the membrane properties in terms of proton exchange membrane conditions. The sol-gel and casting method was used to synthesise the SPEEK/PVDF blend membrane. The characterization tests to observe the structure of the membrane, such as X-ray diffraction (XRD), Scanning Electron Microscopy (SEM), FT-IR and mechanical/thermal stability tests were conducted. The membrane ionic transportation and water retention were improved directly by the addition of boron phosphate. The highest power density (242 mW cm?2) and current density (400 mA cm?2) at 0.6 V were obtained by SPEEK/PVDF/10BP, respectively. Additionally, the proton conductivity value of 39 mS cm?1 was obtained for SPEEK/PVDF/10BP sample at 80 °C. The authors concluded that both boron phosphate additive and SPEEK/PVDF blend membrane have promising results for fuel cell future operations.  相似文献   

12.
A drawback of sulfonated aromatic main-chain polymers such as sulfonated poly(ether ether ketone)s (SPEEKs) is their high methanol crossover when the proton conductivity is sufficient for direct methanol fuel cell (DMFC) applications. To overcome this disadvantage, in this paper, the SPEEK substrate was coated with the crosslinked chitosan (CS) barrier layer to form the two-layer composite membranes. Scanning electron microscope (SEM) micrographs showed that the CS layer was tightly adhered on the SPEEK substrate and the thickness of CS layer could be adjusted by varying the concentration of CS solution. It was noticed that with the increment of thickness of CS layer, the methanol diffusion coefficient of the composite membranes significantly dropped from 3.15 × 10−6 to 2.81 × 10−7 cm2 s−1 at 25 °C which was about one order of magnitude lower than those of the pure SPEEK and Nafion® 117 membranes. In addition to the effective methanol barrier, the composite membranes possessed adequate thermal stability (the 5% weight lose temperature exceeded 240 °C) and good proton conductivity. The proton conductivity of all composite membranes was in the order of 10−2 S cm−1 and increased with the elevation of temperature. Furthermore, the composite membranes exhibited much higher selectivity (conductivity/methanol diffusion coefficient) compared with the pure SPEEK and Nafion® 117 membranes. These results indicated that introducing the crosslinked CS layer onto the SPEEK surface was an effective method for improving the performance of the SPEEK membrane, especially for reducing the methanol crossover.  相似文献   

13.
Sulfonated poly(ether ether ketone) (SPEEK) membrane with high sulfonation degree (SD) is a promising substitute of Nafion as proton exchange membrane (PEM), due to the excellent proton conductivity and low cost. However, its widespread application is limited by the inferior structural stability. Here, we report the fabrication of high SD SPEEK membrane with outstanding structural stability through an in-situ molecular-level hybridization method. Concretely, the ionic nanophase of SPEEK membrane is filled with precursors, which are then in-situ converted into polymer quantum dots (PQDs) by a microwave-assisted polycondensation process. In this manner, the micro-phase separation structure of SPEEK membrane is well maintained. PQDs with abundant hydrophilic functional groups together with the inherent –SO3H groups impart hybrid membrane highly enhanced proton conductivity of 138.2 mS cm−1 at 80 °C, which is comparable to Nafion. This then offers a 116.3% enhancement in device output power. Meanwhile, PQDs act as cross-linkers via generated electrostatic interactions with SPEEK, affording hybrid membrane with SD of 94.1% an ultralow swelling ratio of 1.35% at 25 °C, about 35 times lower than control membrane. More importantly, the in-situ molecular-level hybridization method is versatile, which can also boost the performances of chitosan (CS)-based membranes.  相似文献   

14.
To solve the conflict between high proton conductivity and low methanol crossover of pristine sulfonated aromatic polymer membranes, the polyorganosilicon doped sulfonated poly (ether ether ketone ketone) (SPEEKK) composite membranes were prepared by introducing polyorganosilicon additive with various functional groups into SPEEKK in this study. Scanning electron microcopy (SEM) images showed the obtained membranes were compact. No apparent agglomerations, cracks and pinholes were observed in the SEM images of composite membranes. The good compatibility between polymer and additive led to the interconnection, thus producing new materials with great characteristics and enhanced performance. Besides, the dual crosslinked structure could be formed in composite membranes through the condensation of silanols and the strong interaction between matrix and additive. The formation of dual crosslinked structure optimized the water absorption, enhanced the hydrolytic stability and oxidative stability of membranes. Especially, the incorporation of additive improved the strength and flexibility of composite membranes at the same time, meaning that the life of the composite membranes might be extended during the fuel cell operation. Meanwhile, the proton conductivity improved with increasing additive content due to the loading of more available acidic groups. It is noteworthy that at 25% additive loading, the proton conductivity reached a maximum value of 5.4 × 10−2 S cm−1 at 25 °C, which exceeded the corresponding value of Nafion@ 117 (5.0 × 10−2 S cm−1) under same experimental conditions. The composite membrane with 20 wt% additive was found to produce the highest selectivity (1.22 × 105 S cm−3) with proton conductivity of 4.70 × 10−2 S cm−1 and methanol diffusion coefficient of 3.85 × 10−7 cm2 s−1, suggesting its best potential as proton exchange membrane for direct methanol fuel cell application. The main novelty of our work is providing a feasible and environment-friendly way to prepare the self-made polyorganosilicon with various functional groups and introducing it into SPEEKK to fabricate the dual crosslinked membranes. This design produces new materials with outstanding performance.  相似文献   

15.
Proton exchange membrane (PEM) with high proton conductivity is crucial to the commercial application of PEM fuel cell. Herein, sulfonated halloysite nanotubes (SHNTs) with tunable sulfonic acid group loading were synthesized and incorporated into sulfonated poly(ether ether ketone) (SPEEK) matrix to prepare nanocomposite membranes. Physicochemical characterization suggests that the well-dispersed SHNTs enhance the thermal and mechanical stabilities of nanocomposite membranes. The results of water uptake, ionic exchange capacity, and proton conductivity corroborate that the embedded SHNTs interconnect the ionic channels in SPEEK matrix and donate more continuous ionic networks. These networks then serve as proton pathways and allow efficient proton transfer with low resistance, affording enhanced proton conductivity. Particularly, incorporating 10% SHNTs affords the membrane a 61% increase in conductivity from 0.0152 to 0.0245 S cm−1. This study may provide new insights into the structure-properties relationships of nanotube-embedded conducting membranes for PEM fuel cell.  相似文献   

16.
Structure design is the primary strategy to acquire suitable ionomers for preparing proton exchange membranes (PEMs) with excellent performance. A series of comb-shaped sulfonated fluorinated poly(aryl ether sulfone) (SPFAES) membranes are prepared from sulfonated fluorinated poly(aryl ether sulfone) polymer (SPFAE) and sulfonated poly(aryl ether sulfone) oligomer (SPAES-Oligomer). Chemical structures of the comb-shaped membranes are verified by 1H nuclear magnetic resonance (NMR) and Fourier transform infrared (FT-IR) spectra. The comb-shaped SPFAES membranes display more continuous hydrophilic domains for ion transfer, because the abundant cations and flexible side-chains structure possess higher mobility and hydrophilicity, which show significantly improved proton conductivity, physicochemical stability, mechanical property compared to the linear SPFAE membranes. In a H2/O2 single-cell test, the SPFAES-1.77 membrane achieves a higher power density of 699.3 mW/cm2 in comparison with Nafion® 112 (618.0 mW/cm2) at 80 °C and 100% relative humidity. This work offers a promising example for the synthesis of highly branched polymers with flexible comb-shaped side chains for high-performance PEMs.  相似文献   

17.
A series of sulfonated poly(arylene ether ketone sulfone)s polymer having a degree of sulfonation of 80% and a carboxyl group in the side chain (C-SPAEKS) were prepared by polycondensation. The 4-aminopyridine grafted sulfonated poly(arylene ether ketone sulfone)s polymer membranes (SPPs) were prepared by amidation reaction with the carboxyl group to immobilize 4-aminopyridine on the side chain. The 1H NMR results and Fourier transform infrared of SPP membranes demonstrated the successful grafting of the 4-aminopyridine. Proton conductivity, water absorption, swelling ratio, and thermal stability of different proportions of SPP membranes were investigated under the different conditions. With the increase of pyridine grafting content, the methanol permeability coefficient of the membrane decreased significantly from 8.17 × 10−7 cm2s−1 to 8.92 × 10−8 cm2s−1 at 25 °C. And, the proton conductivity and relative selectivity of the membrane were positively correlated with the grafted pyridine content. Among them, the SPP-4 membrane exhibited the highest proton conductivity of 0.088 Scm−1 at 100 °C. The relative selectivity increased from 4.73 × 104 S scm−3 to 9.84 × 104 S scm−3.  相似文献   

18.
A sulfonated poly(ether ether ketone) containing hydroxyl groups (HO-SPEEK) has been synthesized for investigation as the ionomer in cathode of direct methanol fuel cells. Na salt-formed HO-SPEEK shows excellent solubility in some aqueous solutions of monohydric alcohol and can be successfully self-cross-linked in-situ during the hot-pressing process of membrane-electrode assembly (MEA) fabrication. The resulted cross-linked HO-SPEEK displays improved stability and mechanical strength. MEA incorporating the HO-SPEEK as both membrane and ionomer shows excellent peak power density of 29.0 mW cm−2 at 25 °C with 4 M methanol, which is comparable to the Nafion reference MEA (31.8 mW cm−2) and 2.9-fold higher than that of the MEA prepared from catalyst ink that contained dimethyl sulfoxide (10.3 mW cm−2). Thanks to the avoidance of high-boiling point solvent, the resulted HO-SPEEK-based cathode is loosened with many large pores for reactant gas and product transportation. These results demonstrate that water-alcohol dispersible and cross-linkable sulfonated hydrocarbons hold technological promise as ionomer for electrode.  相似文献   

19.
In polymer electrolyte fuel cell operation, a decrease in the proton conductivity of the membrane at reduced humidity is a main cause for poor cell performance at high temperature. To alleviate the dehydration of the membrane at high temperature, sulfonated mesoporous benzene-silica (sMBS) particles are embedded in sulfonated poly(ether ether ketone) (sPEEK) membranes. As the sMBS itself is highly sulfonated on both organic and inorganic moieties, the proton conductivity of composite membranes is much higher than that of the pristine sPEEK membrane, and it reaches that of Nafion 117 at a high relative humidity (RH) of 90%. The dehydration rate of the membrane is reduced significantly by the capillary condensation effect of sMBS particles with the nanometer-scale 2-D hexagonal cylindrical pores, and the proton conductivity of the composite membranes, 0.234 × 10−1 S cm−1, is much higher than that of pristine sPEEK membrane, 0.59 × 10−3 S cm−1, at a relatively low humidity of 40% RH. This maintenance of high conductivity at low humidity is attributed to the high water-holding capacity of the sMBS proton conductors. The sMBS-embedded sPEEK composite membranes show a much lower methanol permeability of 2–5 × 10−7 cm2 s−1 compared to that of Nafion 117, which is 1.6 × 10−6 cm2 s−1 at room temperature.  相似文献   

20.
Novel blend nanocomposite proton‐exchange membranes were prepared using sulfonated poly (ether ether ketone) (SPEEK), perfluorosulfonic acid (PFSA), and Ba0.9Sr0.1TiO3 (BST) doped‐perovskite nanoparticles. The membranes were evaluated by attenuated total reflection, X‐ray diffraction spectroscopy, water uptake, proton conductivity, methanol permeability, and direct methanol fuel cell test. The effect of two additives, PFSA and BST, were investigated. Results indicated that both proton conductivity and methanol barrier of the blend nanocomposite membranes improved compared with pristine SPEEK and the as‐prepared blend membranes. The methanol permeability and the proton conductivity of the blend membrane containing 6 wt% BST obtained 3.56 × 10?7 cm2 s?1 (at 25 °C) and 0.110 S cm?1 (at 80 °C), respectively. The power density value for the optimum blend nanocomposite membrane (15 wt% PFSA and 6 wt% BST) (54.89 mW cm‐2) was higher than that of pristine SPEEK (31.34 mW cm‐2) and SPF15 blend membrane (36.12 mW cm‐2).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号