首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 609 毫秒
1.
在定容燃烧弹上进行了柴油分别在空气和在甲醇/空气预混均质混合气中着火燃烧的实验研究.结果表明,与空气热氛围相比,甲醇混合气热氛围延长了柴油的滞燃期和加长了火焰浮起高度.采用正庚烷-甲醇的详细化学反应机理,利用数值模拟的方法计算了零维模型中正庚烷及正庚烷加甲醇的燃烧反应过程和中间产物历程.其结果表明,甲醇的加入使得正庚烷的高低温放热反应开始时刻后移,滞燃期延长,低温放热反应峰值明显下降,且无明显的负温度系数区,高温反应放热峰值高于其在空气氛围中,归其原因在于甲醇大量消耗着火的OH自由基,并将其转化为低温氧化中不活跃的H2O2,使得系统着火前反应活性减弱.实验和计算结果均表现出甲醇具有抑制柴油及其参比燃料着火的作用.  相似文献   

2.
在一台快速压缩机上研究了不同比例的丙醇/正庚烷二元混合燃料在当量比为1.0、压缩上止点压力2,MPa、压缩温度为650~850,K时的着火延迟.利用混合燃料的详细动力学机理开展了丙醇/正庚烷着火特性的化学反应动力学分析.研究结果表明,在本文实验条件下和温度范围内,丙醇/正庚烷的着火延迟在不同的温度范围呈现不同的变化规律.在丙醇比例较低时,正丙醇/正庚烷混合燃料的着火延迟高于异丙醇/正庚烷混合燃料;丙醇比例较高时,二者的着火延迟非常接近.化学动力学分析表明,由于正庚烷低温反应根池的建立,丙醇在着火过程中也呈现出两阶段燃烧现象.路径分析表明,上止点温度的提高可使部分羟丙烷基发生裂解并增强系统活性.进一步的敏感性分析表明,对正丙醇/正庚烷混合燃料,正庚烷的脱氢反应和链分支反应对促进着火始终有重要影响,随着正丙醇比例的增加,正丙醇对混合燃料着火的抑制与促进都有较大的影响.异丙醇/正庚烷混合燃料的着火在异丙醇比例较大或上止点温度较高时对异丙醇的氧化更加敏感,抑制着火的反应始终为小分子基团的反应.  相似文献   

3.
轻烃燃气是一种新型燃气,产地不同会造成主要成分戊烷异构体含量不同,着火延迟时间是描述燃烧特性的重要参数也是验证动力学机理的重要依据,本文使用CHEMKIN PRO模拟研究温度1000~1800K、压力1~20atm、当量比0.5~2.0范围内正戊烷异戊烷不同掺混比对着火延迟时间的影响,采用生成速率分析法(ROP)和敏感性分析法探究正戊烷异戊烷掺混比对着火延迟时间的影响机理。结果表明:温度增加会减小着火延迟时间;在本文研究压力范围内,掺混比影响着火延迟时间趋势较为复杂;从贫燃料区至富燃料区,当量比增加会减小着火延迟时间。异构体中随着正戊烷含量减小着火延迟时间增加,掺混比的影响随着温度、压力增加而减小;OH是戊烷反应消耗脱氢的主要自由基,正戊烷易与OH、HO2反应脱氢,异戊烷易与H、O反应脱氢,当正戊烷含量减少时,OH和HO2消耗减少、H和O消耗增加;反应过程中的主要自由基R(C5H11)基和QO(C5H10O)基含量随着正戊烷含量减小而减小;温度为1000K时,正戊烷敏感性系数最大的反应促进着火减小着火延迟时间,掺混异戊烷后敏感性系数最大的反应抑制着火增加着火延迟时间,当温度为1800K时,敏感性系数最大的反应均为R1,其他反应敏感性系数相对较小,掺混比对着火延迟时间的影响较小。  相似文献   

4.
采用零维详细化学动力学模型,模拟了分别加入H2O2、CH2O两种添加剂的甲醇HCCl燃烧,分析了这两种添加剂对甲醇燃烧的影响.结果表明:H2O2、CH2O在缸内分解产生OH活性基,提高了OH的浓度,甲醇着火时刻提前,并且提高了缸内的压力和温度峰值.同时,CH2O能提高平均指示压力,H2O2通过控制着火时刻来影响平均指示压力的大小.  相似文献   

5.
甲醇添加剂对柴油类燃料HCCI着火与燃烧的影响   总被引:1,自引:0,他引:1  
HCC I燃烧不能大量应用到商业产品的核心障碍是其着火时刻和燃烧速率的控制问题.为此,研究了甲醇对柴油类燃料(正庚烷)均质压缩自燃特性的抑制效果及其对燃烧持续期和排放特性的影响.在正庚烷中加入1000/~4000/的甲醇(体积分数),通过气口喷射进入单缸发动机实现HCC I燃烧.考察了几种燃料在1 800 r/m in各种当量比下的燃烧特性和排放特性.研究表明,在正庚烷中加入2000/~3000/的甲醇后,低温反应时刻推迟,低温放热率降低,导致整个着火时刻推迟到上止点附近,燃烧持续时间适当延长,发动机当量比范围拓宽,但是过高比例的甲醇会引起低负荷范围的显著缩小.在排放特性方面,甲醇比例低于2000/时,CO和HC排放与正庚烷相当,但是3000/~4000/甲醇正庚烷燃料的HC就有明显升高.  相似文献   

6.
采用气相色谱质谱联用仪测定了小球藻生物柴油的组分和比例,分析了小球藻生物柴油的理化特性,在此基础上,确定了小球藻生物柴油的表征物质。应用“叠加法”构建了小球藻生物柴油的详细燃烧反应动力学模型,利用激波管试验和发动机台架试验数据对模型加以验证。研究结果表明,选取物质的量比为1∶1的癸酸甲酯和正庚烷作为小球藻生物柴油的表征物质,所构建的详细燃烧反应动力学模型包含3300种物质,10851个基元反应。温度高于1000 K时,着火延迟期的预测值与实验值的最大误差小于8.1%,温度低于1000 K时,误差介于8.1%~15.3%。所构建的模型能较好地预测内燃机缸内压力,最大相对误差为6.6%。  相似文献   

7.
应用零维详细化学反应动力学模型,对不同边界条件下正庚烷(n—heptane)均质压燃燃烧反应的化学反应动力学过程进行了数值模拟研究,得出了以初始温度和燃料当量空燃比这两类边界条件为函数,压缩比为17,转速为1400r/min的HCCI全工况解。结果表明:HCCI燃烧分为完全燃烧区域、低温反应和蓝焰反应区域、仅发生低温反应区域和失火区域;不发生热焰反应的关键是反应H+O2=O+OH进行程度浅,不能生成足够的OH自由基使CO氧化成CO2;蓝焰反应也不发生而仅发生低温反应的关键是H2O2分解反应的进行程度浅,H2O2只有在缸内温度达到1000K时才能快速分解,这就不能生成足够的OH自由基使甲醛转化成CO2低温反应和蓝焰反应区域是高CO排放区,仅发生低温反应的区域是高甲醛排放区。  相似文献   

8.
为研究CO2/O2环境对柴油着火和燃烧特性的影响,以正庚烷为柴油表征燃料,利用CONVERGE计算了不同CO2/O2环境下正庚烷的着火和燃烧过程,并搭建了可视化定容燃烧弹试验平台进行了验证。使用高速摄影机记录了初始温度850 K,初始压力3 MPa,CO2体积分数分别为35%、40%、50%和60%时正庚烷燃烧的自发光强度,利用CHEMKIN中定容均质反应器分析了CO2物理和化学作用对着火的影响。研究结果表明:在CO2体积分数35%时存在爆燃的现象,随着CO2体积分数增长,着火延迟时间增长,着火位置远离喷嘴,稳态燃烧阶段火焰的长度和宽度也增大,CO2体积分数在50%~60%之间时火焰自发光强度峰值明显下降;CO2的物理作用抑制了着火,第三体作用对着火的促进作用大于直接参与反应对着火的抑制作用,造成CO2的化学作用缩短了着火延迟时间,并且随着CO  相似文献   

9.
正庚烷HCCI燃烧过程的数值模拟及试验研究   总被引:1,自引:0,他引:1  
结合详细化学动力学机理,运用最新的CHEMKIN—Ⅳ化学动力学软件包中的IC enginc模块模拟了正庚烷的HCCI燃烧过程。并在一台高速四缸柴油机上进行了单缸正庚烷HCCI燃烧试验。分别从理论和试验上研究了正庚烷的HCCI燃烧过程以及各种参数变化对燃烧过程的影响,研究表明:正庚炕燃烧过程由低温反应和高温反应两阶段组成,NC7KET裂解生成OH是低温阶段最重要的反应,高温阶段着火是由H2O2裂解所触发的,低温阶段着火对高温阶段着火起着关键作用;各种参数的变化会导致燃烧过程的显著变化。  相似文献   

10.
燃料着火延迟时间对采用蓄热自着火方式的微型内燃机非常重要。利用Chemkin-Pro软件,分别对甲烷、乙烷、丙烷和正丁烷空气混合气在微型内燃机运行工况下进行着火延迟时间模拟计算,探究初始温度(500 K ~ 1 000 K)、压力(1~ 10atm)和当量比(0.6 ~ 1.2)对着火延迟时间的影响。同时分析了微型内燃机扫气不尽的尾气残留组分(N2、CO2和H2O)对正丁烷着火延迟时间的影响。结果表明:在四种燃料中,正丁烷的低温着火延迟特性最佳,是一种适合于采用蓄热自着火方式的微型内燃机燃料;初始温度、压力的提高和当量比的增大有利于燃料着火延迟时间的缩短;尾气残留使得燃料着火延迟时间变长,着火延迟特性变差,尾气各组分的热效应和基元反应对燃料着火延迟有着不同的影响机制。  相似文献   

11.
It is difficult to predict the ignition delay times for fuels with the two-stage ignition tendency because of the existence of the nonlinear negative temperature coefficient (NTC) phenomenon at low temperature regimes. In this paper, the random sampling-high dimensional model representation (RS-HDMR) methods were employed to predict the ignition delay times of n-heptane/air mixtures, which exhibits the NTC phenomenon, over a range of initial conditions. A detailed n-heptane chemical mechanism was used to calculate the fuel ignition delay times in the adiabatic constant-pressure system, and two HDMR correlations, the global correlation and the stepwise correlations, were then constructed. Besides, the ignition delay times predicted by both types of correlations were validated against those calculated using the detailed chemical mechanism. The results showed that both correlations had a satisfactory prediction accuracy in general for the ignition delay times of the n-heptane/air mixtures and the stepwise correlations exhibited a better performance than the global correlation in each subdomain. Therefore, it is concluded that HDMR correlations are capable of predicting the ignition delay times for fuels with two-stage ignition behaviors at low-to-intermediate temperature conditions.  相似文献   

12.
The mechanisms of the influence of hydrogen enrichment on the combustion and emission characteristics of an n-heptane fuelled homogeneous charge compression ignition (HCCI) engine was numerically investigated using a multi-zone model. The model calculation successfully captured the most available experimental data. The results show that hydrogen addition retards combustion phasing of an n-heptane fuelled HCCI engine due to the dilution and chemical effects, with the dilution effect being more significant. It is because of the chemical effect that combustion duration is reduced at a constant compression ratio if an appropriate amount of hydrogen is added. As a result of retarded combustion phasing and reduced combustion duration, hydrogen addition increases indicated thermal efficiency at a constant combustion phasing. Hydrogen addition reduces indicated specific unburned hydrocarbon emissions, but slightly increases normalized unburned hydrocarbon emissions that are defined as the emissions per unit burned n-heptane mass. The increase in normalized unburned hydrocarbon emissions is caused by the presence of more remaining hydrocarbons that compete with hydrogen for some key radicals during high temperature combustion stage. At a given hydrogen addition level, N2O emissions increases with overly retarding combustion phasing, but hydrogen addition moderates this increase in N2O emissions.  相似文献   

13.
The shock tube autoignition of 2,5-dimethylfuran (DMF)/n-heptane blends (DMF0-100%, by mole fraction) with equivalence ratios of 0.5, 1.0, and 2.0 over the temperature range of 1200–1800 K and pressures of 2.0 atm and 10.0 atm were investigated. A detailed blend chemical kinetic model resulting from the merging of validated kinetic models for the components of the fuel blends was developed. The experimental observations indicate that the ignition delay times nonlinearly increase with an increase in the DMF addition level. Chemical kinetic analysis including radical pool analysis and flux analysis were conducted to explain the DMF addition effects. The kinetic analysis shows that at lower DMF blending levels, the two fuels have negligible impacts on the consumption pathways of each other. As the DMF addition increases to relatively higher levels, the consumption path of n-heptane is significantly changed due to the competition of small radicals, which primarily leads to the nonlinear increase in the ignition delay times of DMF/n-heptane blends.  相似文献   

14.
本文采用激波管研究了正庚烷在不同条件下的点火延时特性,首先考察了当量比为0.5,0.7,1.0时正庚烷/合成空气混合气的点火延时特性;其次在当量比不变和变化的条件下,研究了合成空气中CO2的比例以及压力对点火延时的影响.实验结果表明:在温度高于1 200K时,正庚烷点火延时随当量比增加而增大;改变合成空气中O2与CO2的比例时,点火延时随CO2的比例增加而增大;维持当量比不变,当激波管高、低压段初始压力相同时,点火延时随CO2的比例增加而增大;同时还发现当量比对点火延时的影响随着CO2比例的增加而减小.  相似文献   

15.
《Combustion and Flame》1999,116(1-2):243-258
The catalytically stabilized combustion (CST) of a lean (equivalence ratio Φ = 0.4) methane-air mixture was investigated numerically in a laminar channel flow configuration established between two platinum-coated parallel plates 50 mm long and 2 mm apart. A two-dimensional elliptic fluid mechanical model was used, which included elementary reactions for both gaseous and surface chemistry. Heat conduction in the solid plates and radiative heat transfer from the hot catalytic surfaces were accounted for in the model. Heterogeneous ignition occurs just downstream of the channel entrance, at a streamwise distance (x) of 4 mm. Sensitivity analysis shows that key surface reactions influencing heterogeneous ignition are the adsorption of CH4 and O2 and the recombinative desorption of surface-bound O radicals; the adsorption or desorption of radicals other than O has no effect on the heterogeneous ignition location and the concentrations of major species around it. Homogeneous ignition takes place at x = 41 mm. Sensitivity analysis shows that key surface reactions controlling homogeneous ignition are the adsorption/desorption of the OH radical and the adsorption/desorption of H2O, the latter due to its direct influence on the OH production path. In addition, the slope of the OH lateral wall gradient changes from negative (net-desorptive) to positive (net-adsorptive) well before homogeneous ignition (x = 30 mm), thus exemplifying the importance of a detailed surface chemistry scheme in accurately predicting the homogeneous ignition location. The effect of product formation on homogeneous ignition was studied by varying the third body efficiency of H2O. Product formation promotes homogeneous ignition due to a shift in the relative importance of the reactions H + O2 + M → HO2 + M and HCO + M → CO + H + M.  相似文献   

16.
Successfully designing and making effective of use of the next generation of liquid fuels, which will be derived from a range of biomass and fossil sources, requires an understanding of the interactions between structurally similar and dissimilar fuel components when utilised in current engine technology. Interactions between fuel components can influence the release of energy and production of harmful emissions in compression ignition combustion through determination of the autoignition behavior of the fuel. This paper presents experimental studies carried out in a single-cylinder engine supplied with a range of binary mixture fuels to investigate the effect of fuel component interactions on autoignition in direct injection compression ignition. A range of binary mixtures consisting of toluene and n-heptane and also 1-octene and n-octane were tested so as to observe respectively the effect of an aromatic compound and an alkene on n-alkane combustion and emissions. The engine tests were carried out at constant injection timing and they were repeated at constant ignition timing and at constant ignition delay, the latter being achieved through the addition to the various fuels of small quantities of ignition improver (2-ethylhexyl nitrate). Increasing the presence of toluene in the toluene/n-heptane binary mixtures resulted in an increased ignition delay time and generated a distinct two stage ignition process. An increased level of 1-octene in the binary mixtures of 1-octene/n-octane was also found to increase ignition delay, though to a much lesser extent than toluene in the case of the toluene/n-heptane mixtures. Interactions between the fuel components during the ignition delay period appear important in the case of the toluene/n-heptane mixtures but not those of 1-octene/n-octane. At constant injection and constant ignition timings, the combustion phasing and the level of emissions produced by each binary mixture were primarily driven by the ignition delay time. With ignition delay equalised, an effect of adiabatic flame temperature on NOx production was visible.  相似文献   

17.
适用于HCCI的正庚烷化学动力学简化模型的研究和比较   总被引:1,自引:0,他引:1  
利用敏感性分析、主要组分分析以及准稳态假定3种方法,将含有44种组分和72个反应的SKLE正庚烷简化模型再简化到40种组分和56个反应;简化后的模型对滞燃期的预测结果与LLNL详细模型非常接近,与激波管实验结果基本吻合,适用于HCCI发动机的多维模型的计算.与其他模型比较发现,Patel等人的模型缺少在低温区起关键作用的反应,即二次加氧反应(.QOOH+O2.OOQOOH),而Tanaka等人的模型缺少了CO的主要生成历程;在HCCI发动机典型工况范围内,SKLE简化模型预测着火时刻与LLNL详细模型吻合最好,Tanaka等人模型和Patel等人模型表现稍差,说明构建简化动力学模型时必须保证低温反应路径主干完整,同时不能忽略CO的主要生成历程.  相似文献   

18.
Simplified chemical-kinetic mechanisms are sought that can provide agreement with measured shock-tube autoignition times and counterflow critical ignition conditions for methanol (CH3OH) oxidation. Existing detailed chemistry over-predicts measured counterflow ignition temperatures by 100 K or more. It was found that the elementary step CH3OH + HO2 → CH2OH + H2O2 most strongly affects the predictions. Increasing the pre-factor in the Arrhenius expression for the rate of this step from different available literature values by a factor ranging from 2 to 13, namely to 8 × 1013 cm3/(mol s), within existing uncertainty, produces agreement of predictions with experiment. Using this revised rate, unimportant steps are deleted from the San Diego mechanism to obtain a set of 26 irreversible elementary steps (augmented to 27 by including fuel dissociation to CH3 + OH for high-temperature shock-tube conditions) that predict ignition nearly as well as the detailed mechanism. In this mechanism, the intermediate species CH2OH, CH3O, HCO, H, O, and OH accurately obey steady states, while the intermediates CH2O, HO2, H2O2, CO, and H2 do not. The result is a six-step overall reduced mechanism that describes ignition well at the lower temperatures. At higher temperatures, the aforementioned fuel decomposition becomes important, increasing the six-step mechanism to a seven-step mechanism. Expressions for the reaction rates, branching ratios, and steady-state species concentrations in the six-step reduced mechanism are given to facilitate future methanol ignition computations. Higher alcohols, which are less dependent on HO2 attack in ignition, are indicated to nevertheless possibly benefit from an increase of the rate of the corresponding step.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号