首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 15 毫秒
1.
The objective of this paper is to study hydrogen-assisted catalytic combustion of hydrocarbon on a microscale experimentally. In the experiment, neither methane nor ethane can be ignited by itself, but hydrogen can be ignited and burn steadily in this tube. It is found that there is no significant difference between hydrogen added to the hydrocarbon and hydrogen alone as fuel without the platinum thermocouple, but the temperature will increase and the efficiency of methane combustion will increase considerably when the platinum thermocouple was put into the microtube. Methane can burn steadily without adding hydrogen after ignited by hydrogen. It can be concluded that the addition of hydrogen to hydrocarbon is favorable to ignition and the platinum thermocouple catalyzes the hydrocarbon combustion. The experiment result showed that the added hydrogen acts as an assistant for ignition and expands the range for methane steady burn. After igniting, methane can burn steadily alone at catalytic condition. This is useful for optimization microcombustion fuel.  相似文献   

2.
Low concentration methane, emitted from coal mines, landfill, animal waste, etc. into the atmosphere, is not only a greenhouse gas, but also a waste energy source if not utilised. Methane is 23 times more potent than CO2 in terms of trapping heat in the atmosphere over a timeframe of 100 years. This paper studies a novel lean burn catalytic combustion gas turbine, which can be powered with about 1% methane (volume) in air. When this technology is successfully developed, it can be used not only to mitigate the methane for greenhouse gas reduction, but also to utilise such methane as a clean energy source. This paper presents our study results on the thermodynamic characteristics of this new lean burn catalytic combustion gas turbine system by conducting thermal performance analysis of the turbine cycle. The thermodynamic data including thermal efficiencies and exergy loss of main components of the turbine system are presented under different pressure ratios, turbine inlet temperatures and methane concentrations.  相似文献   

3.
Rapid development of portable electronics promotes the R&D of micro/miniature power sources with high energy density. The high mass energy density and zero emission characteristic of hydrogen show a huge potential to develop powerful portable hydrogen-based power sources. A miniature hydrogen catalytic combustion powered thermoelectric generator (CCP-TEG) is designed and tested in detail. An outstanding catalytic core is prepared with a newly proposed method on the basis of combining H2PtCl6 solution and foamed transition metal. Such catalytic core is demonstrated to provide high combustion temperature, complete combustion, and sufficient heat flux for power generation. Several parameters including input power, equivalent ratio, cooling mode, and load resistance are investigated to clarify their influences on the combustion temperature, electric power, and various efficiencies (combustion, heat collection, TE, and overall efficiencies) of the hydrogen CCP-TEG. The developed hydrogen CCP-TEG is able to generate an electric power of 20.7 W with an overall efficiency of 2.04%, filling the research gap of generating large electric power (>10 W) with sufficiently high overall efficiency (>2%) in the research field of hydrogen CCP-TEG. The generated electric power and overall efficiency are much higher than those in previous hydrogen CCP-TEGs. The prepared catalytic core remains excellent functionality after running for 30 h, and the combustion temperature is as high as 918 K, which ensures the sufficiently high temperature difference for powerful power generation. This study is conducted to illustrate a concrete method on developing a powerful hydrogen CCP-TEG, and to identify further research directions.  相似文献   

4.
Large amplitude thermally induced vibrations of cylindrical shells made of a through-the-thickness functionally graded material (FGM) are investigated in the current research. All of the thermo-mechanical properties of the FGM shell are assumed to be functions of temperature and thickness coordinate. Shell is subjected to rapid surface heating on the ceramic-rich surface while the other surface of the shell is kept at reference temperature. One dimensional heat conduction equation is constructed and solved by means of a hybrid finite difference-Crank–Nicolson algorithm. The constructed heat conduction equation is nonlinear since the thermal conductivity is temperature dependent. With the aid of first-order shear deformation shell theory under the axisymmetric Donnell kinematic assumptions and von Kármán type of strain-displacement relations, the total energy of the shell is established. Implementing the conventional Ritz method, a set of nonlinear coupled algebraic equations are obtained which govern the dynamics of the shell under thermal shock. These equations are solved in time domain using the Newmark time marching scheme and the simple Picard successive method. Parametric studies are given to explore the dynamics of an FGM cylindrical shell under thermal shock.  相似文献   

5.
In this study a numerical analysis of hydrogen production via an autothermal reforming reactor is presented. The endothermic reaction of steam methane reforming and the exothermic combustion of methane were activated with patterned Ni/Al2O3 catalytic layer and patterned Pt/Al2O3 catalytic layer, respectively. Aiming to achieve a more compacted process, a novel design of a reactor was proposed in which the reforming and the combustion catalysts were modeled as patterned thin layers. This configuration is analyzed and compared with two configurations. In the first configuration, the catalysts are modeled as continuous thin layers in parallel, while, in the second configuration the catalysts are modeled as continuous thin layers in series (conventional catalytic autothermal reactor). The results show that the pattern of the catalyst layers improves slightly the hydrogen yield, i.e. 3.6%. Furthermore, for the same concentration of hydrogen produced, the activated zone length can be decreased by 38% and 15% compared to the conventional catalytic autothermal reforming and the configuration where the catalysts are fitted in parallel, respectively. Besides, the oxygen consumption is lowered by 5%. The decrement of the catalyst amount and the oxygen feedstock in the novel studied design lead to lower costs and compact process.  相似文献   

6.
The objective of this study is to optimize a microchannel reactor using hydrogen assisted catalytic combustion for steam reforming of methane. Hydrogen assisted catalytic combustion does not require preheating because the catalytic combustion of hydrogen occurs at room temperature. After start-up by hydrogen catalytic combustion, fuels of hydrogen and methane were changed to methane. The geometric configuration of the counter-flow reactor was optimized by the simulation model under steady state condition. The hydrogen flow rate in the counter-flow reactor was also optimized by transient simulations using the response surface methodology. As a result, the counter-flow reactor showed extremely short start-up time because of the optimized configuration and the optimized hydrogen flow rate. Hot spots were avoided because of the hydrogen shut-off after start-up. The operating characteristics of the counter-flow reactor were compared with those of the co-flow reactor.  相似文献   

7.
This work aims to investigate numerically the catalytic combustion of a catalytically stabilized combustor. The numerical model treated a catalytic channel deposited with Pt and used a plug model of laminar, one‐dimensional, and steady‐state flow. The predicted conversions of mixture and ignition temperatures of surface reaction agreed well with the measured data when a multi‐step mechanism was used for the CH4 surface reaction over Pt. The flame speed of a mixture supported by catalytic surface reaction was found to increase compared with a mixture without a catalytic combustion. CO mole fractions were analysed for three cases—gas reaction, surface reaction, and gas reaction coupled with surface reaction. The case of solely gas reaction produced the most CO emission and the case of solely surface reaction generated the least CO emission. The position where flame ignites was also evaluated numerically. There was only a small difference between the measured and predicted results on the starting points of flame in the catalytic channel. As a result, the plug model was shown to model surface ignition very well, however, it did not predict well the position of flame ignition. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

8.
Steam reforming performance in a coupled reactor that consists of a steam reformer and a catalytic combustor is experimentally investigated in this study. Endothermic steam reforming can occur through the absorption of heat from the catalytic combustion of the anode offgas in a heat-exchanging coupled reactor. The reaction characteristics were observed by varying parameters such as the inlet temperature of the catalytic combustor, the excess air ratio for the catalytic combustion, the fuel utilization rate in the fuel cells, and the steam-to-carbon ratio in the steam reformer. The reactor temperature and reformate composition were measured to analyze the performance of the reactor. The results show the potential applicability and design technologies of the coupled reactor for the fuel processing of high temperature fuel cells using an external reformer.  相似文献   

9.
Premixed combustion of hydrogen/air over a platinum (Pt) catalyst is numerically investigated in a planar channel burner with the aim of stabilising the flame at lean to ultra-lean conditions. A steady laminar species transport model is examined in conjunction with elementary heterogeneous and homogeneous chemical reaction schemes and validated against experimental results. A stability map is obtained in a non-catalytic burner for the equivalence ratios (φ) of 0.15–0.20, which serves as the basis for the catalytic flame analysis. Over the Reynolds numbers (Re) investigated in the non-catalytic burner, no flame is observed for φ ≤ 0.16, and flame extinction occurs at Re < 571 and Re < 381 for φ = 0.18 and 0.20, respectively. Moreover, a significant amount of unburned H2 exits the burner in all cases. With the Pt catalyst coated on the walls, complete H2 combustion is attained for 0.10 ≤ φ ≤ 0.20 where the contribution of gas phase (homogeneous) reaction increases with Re. Furthermore, radiation on the wall and at the inlet affects the combustion kinetics and flame temperature. Finally, NOx emission is investigated under the same conditions and found to increase with equivalence ratio but has a negligible effect with the inflow Reynolds number.  相似文献   

10.
Catalytic partial oxidation of methane (CPOM) is a promising method for hydrogen production with autothermal reaction. To figure out the unsteady reaction characteristics of CPOM in a Swiss-roll reactor along with heat recirculation, a numerical method is employed to simulate the transient reaction dynamics, with emphasis on energy recovery using exergy analysis. Three different gas hourly space velocities (GHSVs) of 5000, 10,000 and 50,000 h−1 with the condition of atomic O/C ratio of 1 are considered. The predictions indicate that increasing GHSV substantially shortens the transient period of chemical reactions; however, it also reduces the methane conversion, as results of more reactants sent into the reactor and shorter residence time of the reactants in the catalyst bed. Within the investigated range of GHSV, the methane conversion with energy recovery at the steady state is larger than 80%, much higher than the reaction without heat recovery. The selectivities of H2 and CO in the product gas are always larger than 90%. The exergy recovery is in the range of 66–80%, implying that over two-third useful work contained in the product gas can be reused to preheat the reactants in the reactor, thereby enhancing the performance of CPOM.  相似文献   

11.
Thermal coupling of endothermic and exothermic reactions is an important pathway for integrated thermal management within a methanol steam reforming reactor heated by methanol catalytic combustion. In this study, a numerical model is developed for heat and mass transfer calculations, methanol steam reforming and catalytic combustion reactions, which is used to explore the effects of design parameters on compact parallel channel reactor performance. Efficiency of the integrated reactor is optimized by the coupling of endothermic and exothermic reactions using conventional wall material. Temperature uniformity is improved by the adjustment of the flow arrangement and the catalyst distribution. This work provides an effective energy management strategy and tool which can be adopted in the design of portable hydrogen generation systems.  相似文献   

12.
In this paper, different methods to prepare a Pt/stainless steel mesh catalyst for catalytic hydrogen combustion are reported. Pt was deposited as a thin layer onto stainless steel mesh as a support matrix. Thermal treatment resulted in the formation of uniformly distributed near nano-sized Pt particles on the support's surface. The catalysts were evaluated for catalytic hydrogen combustion, and temperatures of between 420 and 520 °C were achieved and maintained at hydrogen flow rates of 0.2–0.4 Nl/min. SEM and EDX results indicate that stainless steel support calcination promoted the formation of a native oxide layer. This oxide layer stabilized Pt particles during hydrogen combustion procedures, effectively preventing significant Pt aggregation from occurring. It was also found that the Ni content of stainless steel promoted the catalytic hydrogen combustion reaction.  相似文献   

13.
This study aims at investigating the effect of a multistrut-based hydrogen injector in a scramjet combustor underreacting case. The numerical analysis is carried out using two-dimensional Reynolds-averaged Navier–Stokes equations with the Shear Stress Transport k ω turbulence model in contention to comprehend the flow physics during scramjet combustion. The three major parameters, such as the shock wave pattern, wall pressures, and static temperature across the combustor, are validated with the reported experimental results. The results comply with the range, indicating that the adopted simulation method for single strut injection can be extended for other investigations. It is noticed that with multistrut injectors, as hydrogen jet pressure increases in the supersonic flow field, the jet penetration rate in the lateral direction of the flow and the total pressure loss as compared with the baseline injection pressure conditions has increased. The supersonic flow characteristics are determined based on the flow properties, combustion efficiency, mixing efficiency, and total pressure loss. Compared with the single-strut output of a scramjet combustor, multistruts inclusion increased the combustion efficiency by almost 18%, the mixing efficiency attained the maximum with 16% fewer lengths. The total pressure loss in single-strut is 14% lower than that of multistrut.  相似文献   

14.
A novel bimodal catalytic membrane reactor (BCMR) consisting of a Ru/γ-Al2O3/α-Al2O3 bimodal catalytic support and a silica separation layer was proposed. The catalytic activity of the support was successfully improved due to enhanced Ru dispersion by the increased specific surface area for the γ-Al2O3/α-Al2O3 bimodal structure. The silica separation layer was prepared via a sol–gel process, showing a H2 permeance of 2.6 × 10−7 mol Pa−1 m−2 s−1, with H2/NH3 and H2/N2 permeance ratios of 120 and 180 at 500 °C. The BCMR was applied to NH3 decomposition for COx-free hydrogen production. When the reaction was carried out with a NH3 feed flow rate of 40 ml min−1 at 450 °C and the reaction pressure was increased from 0.1 to 0.3 MPa, NH3 conversion decreased from 50.8 to 35.5% without H2 extraction mainly due to the increased H2 inhibition effect. With H2 extraction, however, NH3 conversion increased from 68.8 to 74.4% due to the enhanced driving force for H2 permeation through the membrane.  相似文献   

15.
The impact of fractional hydrogen preconversion on the subsequent homogeneous ignition characteristics of fuel-lean (equivalence ratio φ = 0.30) H2/O2/N2/CO2 mixtures over platinum was investigated experimentally and numerically at pressures of 1, 5 and 8 bar. Experiments were performed in an optically accessible channel-flow reactor and involved Raman measurements of major species over the catalyst boundary layer and planar laser induced fluorescence (LIF) of the OH radical. Simulations were carried out with a 2-D elliptic code that included detailed hetero-/homogeneous chemistry. The predictions reproduced the LIF-measured onset of homogeneous ignition and the Raman-measured transport-limited catalytic hydrogen consumption. For 0% preconversion and wall temperatures in the range 900 K ? Tw ? 1100 K, homogeneous ignition was largely suppressed for p ? 5 bar due to the combined effects of intrinsic gas-phase hydrogen kinetics and the competition between the catalytic and gas-phase pathways for fuel consumption. A moderate increase of preconversion to 30% restored homogeneous combustion for p ? 5 bar, despite the fact that the water formed due to the upstream preconversion inhibited homogeneous ignition. The catalytically-produced water inhibited gas-phase combustion, particularly at higher pressures, and this kinetic inhibition was exacerbated by the diffusional imbalance of hydrogen that led to over-stoichiometric amounts of water in the near-wall hot ignitable regions. Radical adsorption/desorption reactions hindered the onset of homogeneous ignition and this effect was more pronounced at 1 bar. On the other hand, over the post-ignition reactor length, radical adsorption/desorption reactions significantly suppressed gas-phase combustion at 5 and 8 bar while their impact at 1 bar was weaker. By increasing hydrogen preconversion, the attained superadiabatic surface temperatures could be effectively suppressed. An inverse catalytically stabilized thermal combustion (CST) concept has been proposed, with gas-phase ignition achieved in an upstream porous burner via radiative and heat conduction feedback from a follow-up catalytic reactor. This arrangement moderated the superadiabatic surface temperatures and required modest or no preheat of the incoming mixture.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号