首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Exploring efficient oxygen evolution reaction (OER) catalysts synthesized from low-cost and earth-abundant elements are crucial to the progression of water splitting. In this paper, NiFe layered double hydroxide (LDH) nanosheets were grown on Ni foam (NF) through a straightforward hydrothermal method. The Fe doping effects were systematically investigated by controlling Ni/Fe ratios and Fe valence states, and the in-depth influence mechanisms were discussed. The results indicate that, through controlling structure morphology and enhancing Ni2+ oxidation, NiFeIII(1:1)-LDH displays the best and outstanding OER performance, with a low over potential of 382 mV at 50 mA cm?2, a low Tafel slope of 31.1 mVdec?1 and only 20 mV increase after 10 h continuous test at 50 mA cm?2. To our knowledge, this is one of the best OER electrocatalysts in alkaline media to date. This work provides a facile and novel strategy for the fabrication of bimetallic LDH catalysts with desired structures and compositions.  相似文献   

2.
The synergistic achievement of low-cost earth-abundant electrocatalysts and high efficiency to meet renewable energy need is highly desirable yet challenging. Here, we developed a simple Ni foam self -templating route for V-doped Ni3S2 nanosheet arrays through in situ formation of metal-organic frameworks (MOFs) combined with subsequent conversion. The as-prepared MOF-V-Ni3S2/NF catalyst delivers outstanding electrocatalytic performance in the alkaline solution, which requires low overpotentials of 118.1 mV @10 mA cm?2 and 268 mV @10 mA cm?2 for hydrogen evolution reaction and oxygen evolution reaction, respectively. The V-doping and MOF-derived 3D hieratical nanostructure play a vital role in the catalytic process, which provides efficient active sites and large surface areas. Furthermore, an alkaline electrolyzer was assembled with two pieces of MOF-V-Ni3S2/NF, which achieves efficient water splitting at 1.58 V @10 mA cm?2. This strategy opens up new channels to synthesize MOF-based bifunctional electrocatalysts toward overall water spitting.  相似文献   

3.
Electrocatalytic hydrogen evolution reaction (HER) is a simple way to generate environment-friendly hydrogen energy. Due to the high price and low content, the wide application of noble metal-based electrocatalysts is limited. It is of great significance to study inexpensive, high-performance non-precious metal-based electrocatalysts. In this work, bimetallic nitride (Co/WN@NC) was successfully prepared through a one-step high-temperature calcination way using dicyandiamide (DCA), bimetallic polyoxometalates, and cobalt nitrate. Co/WN@NC exhibits outstanding catalytic performance with the same overpotentials of 143 mV in both alkaline and acidic media at 10 mA cm?2. The Tafel slopes are 90 mV dec?1 and 118 mV dec?1, respectively. Co/WN@NC exhibits good stability in acidic and alkaline solutions for up to 30 h. The splendid catalytic performance can be mainly ascribed to the synergistic effect between Co and WN. This work shows experimental guiding significance for preparing simple transition metal-based electrocatalysts.  相似文献   

4.
The development of highly efficient and low-cost electrocatalysts is critical to the mass production of hydrogen from water splitting. Herein, a facile yet effective method was developed to synthesize bimetallic sulfides Ni3S2/CoSx, which were aimed for use as the electrocatalysts in both HER and OER. Encouragingly, the Ni3S2/CoSx demonstrated a low overpotential of 110 mV for HER at a current density of 10 mA·cm?2. It was discovered that the surface of Ni3S2/CoSx during OER process would undergo an in-situ oxidation to form MOOH (M = Co, Ni), that is, MOOH/Ni3S2/CoSx were the real functioning species in catalysis, which had an excellent OER activity and a low overpotential of 226 mV. Additionally, the assembled electrolyzer required only a low cell voltage of 1.53 V to achieve a current density of 10 mA·cm?2 in a 1 M KOH solution, and its performance was stable. Overall, this work provided a promising strategy for the facile fabrication of low-cost amorphous electrocatalysts, which is expected to promote the progress of overall water splitting.  相似文献   

5.
Transition metal-based heterostructure materials are considered as promising alternatives to state-of-the-art noble metal-based catalysts toward the oxygen evolution reaction (OER). Herein, for the first time, a simple interface engineering strategy is presented to synthesize efficient electrocatalysts based on a novel CoFe2O4/β-Ni(OH)2 heterogeneous structure for the electrochemical OER. Remarkably, the optimized CoFe2O4/β-Ni(OH)2 electrocatalyst, benefiting from its hierarchical hexagonal heterostructure with strong electronic interaction, enhanced intrinsic activity, and electrochemically active sites, exhibits outstanding OER electrocatalytic performance with a low overpotential of 278 mV to reach a current density of 10 mA cm−2, a small Tafel slope of 67 mV dec−1, and long-standing durability for 30 h. Its exceptional OER performance makes the CoFe2O4/β-Ni(OH)2 heterostructure a prospective candidate for water oxidation in alkaline solution. The proposed interface engineering provides new insights into the fabrication of high-performance electrocatalysts for energy-related applications.  相似文献   

6.
Two-dimensional porous nanosheet material has attracted great attention as a promising electrocatalyst for water splitting. Herein, mesh-like Fe-doped CoP holey nanosheets (Fe–CoP HNSs) is synthesized by a facile phosphorization treatment. The Fe–CoP HNSs catalyst features abundant active sites, short charge and ion transport pathways, and favorable mass transfer kinetics, which are conductive to promote the water splitting reaction. Remarkably, the Fe–CoP HNSs catalyst exhibits superior catalytic activity towards hydrogen and oxygen evolution reaction with low overpotentials of 79 and 220 mV to reach 10 mA cm?2, respectively. Furthermore, the assembled Fe–CoP HNSs||Fe–CoP HNSs electrolyzer needs a low cell voltage of 1.60 V to deliver 20 mA cm?2, which is higher than many reported transition metal phosphides electrocatalysts. This work sheds light on the fabrication of transition-metal compound electrocatalyst with holey nanosheet structure by element doping for renewable energy production.  相似文献   

7.
To deal with energy and environmental issues, it is necessary to exploit efficient and stable electrocatalysts for the generation of clean hydrogen. Herein, we describe the synthesis of bimetallic Fe/Ni alloy encapsulated by amorphous carbon shells via a facile annealing strategy for electrocatalytic oxygen evolution reaction (OER). The ferric nickel tartrate annealed at 800 °C (Ni3Fe1Ox@C-800) exhibits a low OER overpotential of 264 mV at 10 mA cm?2 and good stability in alkaline media. Compared with monometallic counterpart, bimetallic Ni3Fe-based nanocomposites show lower OER barrier (ca. 324 kJ mol?1) due to a cooperation mechanism between Ni and Fe sites in promoting electrocatalytic water oxidation. Compared with those annealed at other temperatures, the enhanced OER performance of Ni3Fe1Ox@C-800 can be ascribed to the large electrochemical surface area for exposing more active sites, smaller charge transfer, and better intrinsic activity of Ni3Fe-based sites.  相似文献   

8.
The development of highly active and stable electrocatalysts is essential to solve energy and environmental problems and realize sustainable social and economic development. Herein, we synthesized a bimetallic sulfide material by a kinetically controlled low-temperature solid-phase reaction. The bimetallic sulfide improves the conductivity of the electrocatalysts by optimized electronic structure, and the coupling effect at the heterogeneous interface of WS2 and NiSx increases the charge density on the S site at W–S–Ni, making it easier for the electrocatalysts to trap the active material in solution. In addition, nanosheet clusters expose abundant catalytic sites, which together improve hydrogen evolution reaction (HER) for catalytic activity. Optimized WS2/NiSx composite show near-precious metal catalyst activity with an overpotential at 10 mA cm?2 of only 72 mV in alkaline media, which exhibits excellent catalytic stability and outperforms most non-precious metal electrocatalysts.  相似文献   

9.
Active site engineering for electrocatalysts is an essential strategy to improve their intrinsic electrocatalytic capability for practical applications and it is of great significance to develop a new excellent electrocatalyst for overall water splitting. Here, Co3O4/nickel foam (NF) and Co2(P4O12)/NF electrocatalysts with flower-shaped and sea urchin-shaped structures are synthesized by a simple hydrothermal process and followed by a post-treatment method. Among them, Co2(P4O12)/NF shows good catalytic activity for hydrogen evolution reaction (HER), and at the current density of 10 mA cm?2, the overpotential is only 113 mV Co3O4/NF exhibits good catalytic activity for oxygen evolution reaction (OER), and the overpotential is 327 mV at 20 mA cm?2. An alkaline electrolyzer with Co3O4/NF and Co2(P4O12)/NF catalysts respectively as anode and cathode displays a current density of 10 mA cm?2 at a cell voltage of 1.59 V. This work provides a simple way to prepare high efficient, low cost and rich in content promising electrocatalysts for overall water splitting.  相似文献   

10.
NiFexP@NiCo-LDH/CC nanosheet core-shell nanoarrays electrocatalysts are prepared by electrodeposition and phosphating methods for relatively low potential production of H2 and value-added formate in methanol/water electrolysis systems. During the oxygen evolution reaction process, the over potential is 269 mA at the current density of 50 mA cm?2 and the Tafel slope is 97 mV dec?1. It also realizes the stable long-term electrocatalysis of methanol to formate under high current density and maintains a relatively high Faraday efficiency of 100%. Meanwhile, the energy saving is higher than 10% in the methanol oxidation and co-hydrogen production system that achieves great attention. The superior performance of NiFexP@NiCo-LDH/CC bifunctional electrocatalysts might be beneficial from the interaction to Ni and Fe bimetallic extranuclear electrons that exposes more active sites.  相似文献   

11.
Bifunctional non-precious electrocatalysts with high performance are highly desired for renewable energy but remain challenging. Herein, a CoFeP/rGO heterostructure was rational developed based on the synergistic effect, including superior conductivity, increased catalytic active sites of rGO support and the regulated electron distribution of bimetallic phosphide. At a current of 10 mA cm?2, the CoFeP/rGO-2 composite exhibits excellent HER activity with low overpotentials of 101 mV and 76 mV in 1.0 M KOH and 0.5 M H2SO4 electrolyte, respectively. And highly active alkaline OER performance was provided with an overpotential of only 275 mV to reach a current density of 10 mA cm?2. By the way, the CoFeP/rGO-2 electrode showed a pleasured working voltage of 1.58 V for overall water splitting in alkaline environment. More importantly, the long term durability and higher stability of the catalysts demonstrated their feasibility of bimetallic phosphide/rGO system as bifunctional electrocatalysts.  相似文献   

12.
Herein, strongly coupled Ni3S2/MoS2 hollow spheres derived from NiMo-based bimetal-organic frameworks are successfully synthesized for overall water splitting via a one-pot solvothermal method followed by sulfurization. A well-defined hollow spherical structure with a heterointerface between Ni3S2 and MoS2 is constructed using solvothermal and sulfurization processes. Owing to their bimetallic heterostructure, porous hollow carbon structure with large surface area, and numerous exposed active sites, the Ni3S2/MoS2 hollow spheres are found to be efficient electrocatalysts for both the oxygen evolution reaction (OER) and hydrogen evolution reaction (HER). The heterostructured Ni3S2/MoS2 hollow spheres show small overpotentials of 303 and 166 mV to reach a current density of 10 mA cm?2 for the OER and HER in 1.0 M KOH, respectively. Furthermore, an overall water-splitting electrolyzer consisting of the Ni3S2/MoS2 hollow spheres as both the anode and cathode requires a very low cell voltage of 1.62 V to drive a current density of 10 mA cm?2 with outstanding long-term stability for 100 h. Our findings offer a new pathway for the design and synthesis of electrochemically advanced bifunctional catalysts for various energy storage and conversion applications.  相似文献   

13.
Hollow hybrid heterostructures are regarded to be promising materials as bifunctional electrocatalysts for highly efficient water electrolysis due to their intriguing morphological features and remarkable electrochemical properties. Herein, with FeNi-PBA as both a precursor and morphological template, we demonstrate the rational construct of cost-effective (Fe,Ni)S2@MoS2/NiS2 hollow hybrid heterostructures as bifunctional electrocatalysts for alkaline overall water splitting. Microstructural analysis shows that the hybrid is a kind of hierarchical heterostructure composed of MoS2/NiS2 nanosheets/nanoparticles in situ grown on hollow (Fe,Ni)S2 nanocubes with abundant heterointerfaces, which effectively maximizes the electrochemical active sites to the accessible electrolyte ions, leading to the promoted charge transfer. As expected, the hybrid shows remarkable alkaline electrocatalytic performance, such as hydrogen evolution overpotential of 176 mV and oxygen evolution overpotential of 342 mV at 50 mA cm?2, as well a cell voltage of 1.65 V at 20 mA cm?2. Moreover, the stability and durability are greatly enhanced under harsh electrochemical conditions. This study opens a new venue for developing earth-abundant bifunctional electrocatalysts with hollow hybrid heterostructures for alkaline water electrolysis in the future.  相似文献   

14.
The activation energy barrier of the H–O bond of water molecules is high, and thus the rate of H2 evolution reaction (HER) via water splitting is very slow. Hence, chemists are committed to finding high-performance, cheap and stable catalysts for realizing efficient H2 production. The molybdenum disulfide (MoS2)-based bimetallic sulfide electrocatalysts are favored by researchers because of their particular structures and properties. Herein, the Waugh type polyoxometalate (POM) is used as raw materials. A series of MnS–MoS2 electrocatalysts are in-situ coupled on carbon cloth (CC) substrate by a hydrothermal sulfidation method. The catalyst MnS-MoS2-CC possesses high catalytic activity for HER in a alkaline electrolyte, showing a low overpotential of 54 mV at a current density of 10 mA cm?2, which is very close to 35 mV of the 20% Pt/C electrode. Meanwhile, under a current density of over 50 mA cm?2, the overpotential of MnS-MoS2-CC is less than that of the 20% Pt/C electrode. Moreover, the electrocatalysts show overpotentials of 141 mV and 201 mV at a current density of 10 mA cm?2 in 0.5 M H2SO4 and 1.0 M phosphate buffer solution (PBS), respectively. Besides the high catalytic activity, the MnS-MoS2-CC electrode shows long-term durability in a wide pH range, which is confirmed by several methods including the tests of linear sweep voltammetry (LSV) curve, current density vs. time (I-t) curve, and scanning electron microscopy (SEM). This work provides a feasible route for the preparation of HER electrocatalysts applied in broad pH conditions, especially for alkaline solutions.  相似文献   

15.
The morphology and overall electronic structure of the metal-organic framework (MOF) can be regulated by introducing non-noble metal elements so that it has higher electrocatalytic oxygen evolution reaction (OER) activity but does not change the stability of MOF itself. Herein, we report a series of self-supporting ZnFe bimetallic MOF electrocatalysts on foam nickel (NF) substrates using a simple one-step solvothermal strategy. The morphology evolution process and electronic structure of the Zn2+/Fe3+ molar ratio from 0.25 to 0.75 are systematically investigated. It is worth noting that the overpotentials of ZnFe-BDC-0.75 in alkaline freshwater electrolyte and natural seawater electrolyte are 292 mV and 308 mV (100 mA cm?2), respectively. This work emphasizes the significance of tailoring the electronic microstructure of bimetallic MOFs for efficient OER activity in alkaline and seawater.  相似文献   

16.
Three dimensional (3D) binary Earth-abundant transition metal derived layered nanomaterials are presently considered as the emergent catalysts for the oxygen evolution reaction (OER). In the present study, we demonstrate morphology-controlled bimetallic iron-cobalt (FeCo) nanoclusters (~3.2 nm) embedded in 3D nanosheets (3D-FeCoS NS) on nickel foam (NF) electrode using of single-step electrochemical fabrication approach. The as-developed binder-free 3D-FeCoS NS employ as the potential electrocatalysts for improved OER in 1.0 M KOH. Results display that the 3D-FeCoS NS-B (“B” represents the molar ratio of Fe and Co (1:1)) exhibited an exceptional catalytic OER activity, including a low overpotential (η) (~223 mV @ 10 mA cm?2), small Tafel slope (~66 mV dec?1), high mass activity (~208 Ag?1), high turnover frequency (TOF) (~1.2 s?1), and long-term stability (over 100 h). More significantly, the 3D-FeCoS NS-B6PtC couple attained the current density of ~10 mA cm?2 only at the potential of ~1.53 V, comparing positively with the state-of-the-art RuO26PtC couple. The abundant active sites of nanoclusters and edges of the sheets, synergy between the heterostructures, and accompanied by the presence of surface sulfides/oxides yield improved the OER activity. This study signifies a novel strategy to establish 3D Earth-abundant transition metal sulfides nanosheets for various electrochemical applications, including energy conversion and storage systems.  相似文献   

17.
Efficient and stable electrocatalysts are essential for water splitting. Feasible structural design can facilitate electron transport and increase specific surface area. Herein, the porous CoP4/FeP4 hollow cubes are synthesized by two steps: synthesizing the Co–Fe prussian blue analogues via co-precipitation and phosphating it by calcination. The construction of heterojunction in CoP4/FeP4 not only accelerates electronic transmission but also provides active sites, which acts synergistically on the oxygen and hydrogen evolution reactions. Therefore, the CoP4/FeP4 hollow cubes with the exist of mesoporous exhibit the promising performance for water splitting. The enhanced performance that basically originates from bimetallic synergy and unique morphological structure is acquired with a low overpotential of 270 mV at 10 mA cm?2 and the Tafel slope of 42.4 mV dec?1 towards the oxygen evolution reaction (OER). Electrolyzer with two-electrode system assemble by utilizing the CoP4/FeP4 hybrid as anode and cathode exhibits a cell voltage of 1.74 V to achieve 10 mA cm?2 for overall water splitting. This study that provides a simple strategy to design and construct the heterogeneous interface may promote the development of non-noble metal for HER and OER.  相似文献   

18.
An ongoing challenge still lies in the exploration of proficient electrocatalysts from earth-abundant non-precious metals instead of noble metal-based catalysts for clean hydrogen energy through large-Scale electrochemical water splitting. However, developing a non-precious transition metals based, stable electrocatalyst for cathodic hydrogen evolution reaction (HER) and anodic oxygen evolution reaction (OER) is important challenge for modern energy conversion technology. In this report Vanadium doped bimetallic nickel-iron nanoarray, fabricated by carbon supported architecture through carbonization process for electrochemical water splitting. Three types of catalysts were prepared in different molar ratio of Ni/Fe. The electrocatalytic performance demonstrated that the catalyst with equal mole ratio (0.06:0.06) of Ni/Fe possess high catalytic activity for both OER and HER in alkaline and acidic medium. Besides, our findings revealed that the doping of vanadium could play a strong synergetic effect with Ni/Fe, which provide a small overpotential of 90 mV and 210 mV at 10 mA cm?2 for HER and OER respectively compared to the other two catalyst counterparts. Also, the catalyst with 1:1 (Ni/Fe) molar ratio showed a high current density of 208 mA cm?2 for HER at 0.5 M H2SO4 and 579 mA cm?2 for OER at 1 M KOH solution, the both current densities are much higher than the other two catalysts (different Ni/Fe ratio). In addition, the presented catalysts showed extremely good durability, reflecting in more than 20 h of consistent Chronoamprometry study at fixed overpotential η = 250 mV without any visible voltage elevation. Similarly, the (Ni/Fe) equal ratio catalyst showed better corrosion potential 0.209 V vs Ag/AgCl and lower current density 0.594 × 10?12 A cm?2 in high alkaline medium. The V-doping, MOF/GO surface defects are significantly increased the corrosion potential of the V-NixFey-MOF/GO electrocatalyst. Besides, the water electrolyzed products were analysed by gas chromatography to get clear insights on the formed H2 and O2 products.  相似文献   

19.
The design and fabrication of highly active, robust and cost-efficient electrocatalysts for both oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) is of great significance towards overall water splitting, but remains challenging as well. Herein, we report, for the first time, heterostructural Co/CeO2/Co2P/CoP@NC dodecahedrons as bifunctional electrocatalyst, in which abundant interfaces are formed between different components. Typical ZIF-67 (ZIF = zeolitic imidazolate framework) dodecahedrons with pre-inserted CeO2 nanowires were selected as precursors to synthesize Co/CeO2/Co2P/CoP@NC via a direct carbonization process followed by phosphidation, simultaneously generating the strong coupled heterojunction interfaces through interactions between CeO2 and CoxP species. Abundant porous structure leads to the exposure of more active sites and the carbon encapsulation of nanodomains sustains the high robustness and conductivity and the synergistic effect between the multi-components heterostructure. Benefiting from the above collective advantages, the Co/CeO2/Co2P/CoP@NC electrocatalysts exhibit small overpotentials of 307 and 195 mV to derive 10 mA cm−2 for OER and HER, respectively. Furthermore, an alkaline electrolyzer assembled by using Co/CeO2/Co2P/CoP@NC as both cathode and anode can achieve a current density of 10 mA cm−2 at a low voltage of 1.76 V and work continuously for over 15 h. This work would provide a rational protocol for fabrication multi-phase interface enriched electrocatalysts toward highly efficient energy conversion.  相似文献   

20.
Highly-efficient and stable non-noble metal electrocatalysts for overcoming the sluggish kinetics of oxygen evolution reaction (OER) is urgent for water electrolysis. Biomass-derived biochar has been considered as promising carbon material because of its advantages such as low-cost, renewable, simple preparation, rich structure, and easy to obtain heteroatom by in-situ doping. Herein, Ni2P–Fe2P bimetallic phosphide spherical nanocages encapsulated in N/P-doped pine needles biochar is prepared via a simple two-step pyrolysis method. Benefiting from the maximum synergistic effects of bimetallic phosphide and biochar, high conductivity of biochar encapsulation, highly exposed active sites of Ni2P–Fe2P spherical nanocages, rapid mass transfer in porous channels with large specific surface area, and the promotion in adsorption of reaction intermediates by high-level heteroatom doping, the (Ni0.75Fe0.25)2P@NP/C demonstrates excellent OER activity with an overpotential of 250 mV and a Tafel slope of 48 mV/dec at 10 mA/cm2 in 1 M KOH. Also it exhibits a long-term durability in 10 h electrolysis and its activity even improves during the electrocatalytic process. The present work provides a favorable strategy for the inexpensive synthesis of biochar-based transition metal electrocatalysts toward OER, and improves the water electrolysis for hydrogen production.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号