首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
The development of cost-effective heterogeneous catalysts for the dehydrogenation of formic acid (FA) is the key challenge for the commercialization of FA as a hydrogen-storage medium. Herein, PdCoNi nanoparticles (NPs) with different element ratios supported on N-doped carbon nanosheets (N-CN) were designed, which exhibit excellent catalytic dehydrogenation performance for FA. Compared with PdCoNi NPs loaded on the carbon nanosheets (CN), the introduction of pyrrolic N to CN induces the formation of ultrafine, monodispersed and amorphous Pd0.6Co0.2Ni0.2 NPs with a size of 1.60 nm, which significantly increases the number of active sites and the instant contact between FA and catalysts. The as-prepared Pd0.6Co0.2Ni0.2/N-CN catalyst shows more than 99% conversion and 100% H2 selectivity at room temperature, with a record-high initial turnover frequency (TOFinitial) of 1249.0 h−1 among non-noble containing Pd-based catalysts, which demonstrates the high potential of Pd0.6Co0.2Ni0.2/N-CN as a practical catalyst for the hydrogen generation from FA.  相似文献   

2.
Well dispersed magnetically recyclable bimetallic CoxNi1−x (x = 0, 0.1, 0.3, 0.5, 0.7, 0.9, 1) nanoparticles (NPs) supported on graphene have been synthesized via a facile in situ one-step procedure, using the mixture of sodium borohydride (NaBH4) and methylamine borane (MeAB) as the reducing agent under ambient condition. These NPs were composition dependent for catalytic hydrolysis of amine boranes. Among all the CoNi/graphene catalysts tested, the Co0.9Ni0.1/graphene NPs exhibit the highest catalytic activity toward hydrolysis of AB with the turnover frequency (TOF) value of 16.4 (mol H2 min−1 (mol catalyst)−1), being higher than that of most reported non-noble metal-based NPs, and even many noble metal-based NPs. Moreover, the activation energy (Ea) value is 13.49 kJ/mol, which is the second lowest value ever reported for catalytic hydrolytic dehydrogenation of ammonia borane, indicating the superior catalytic performance of the as-synthesized Co0.9Ni0.1/graphene catalysts. Additionally, Compared with other reducing agents, such as NaBH4, AB, MeAB, and the mixture of NaBH4 and AB, the as-synthesized Co0.9Ni0.1/graphene catalysts reduced by the mixture of NaBH4 and MeAB exert the highest catalytic activity. The Co0.9Ni0.1 NPs supported on graphene exhibit higher catalytic activity than catalysts with other conventional supports, such as SiO2, carbon black, and γ-Al2O3. Furthermore, the as-synthesized Co0.9Ni0.1/graphene NPs show good recyclability and magnetically reusability for the hydrolytic dehydrogenation of amine boranes, which make the practical reusing application of the catalysts more convenient.  相似文献   

3.
The development of a facile yet efficient strategy to boost the catalytic performance of supported Pd nanoparticles (NPs) toward the dehydrogenation of formic acid (FA) is essential but remains challenging. Here, a novel hybrid nanocatalyst comprising Pd and Ni(OH)2 supported on porous carbon (PC) is developed. The obtained Pd–Ni(OH)2/PC nanocatalyst exhibits an excellent catalytic performance for FA dehydrogenation to produce hydrogen. The introduction of Ni(OH)2 in PC support can significantly promote the catalytic activity of Pd NPs toward FA dehydrogenation. Additionally, the catalytic property of Pd–Ni(OH)2/PC is correlated with the Pd/Ni ratio. The 2Pd–1Ni(OH)2/PC with the optimum Pd/Ni ratio of 2/1 exhibits the maximum turnover frequency (TOF) of 3409 h−1 at 60 °C for FA dehydrogenation. The highly dispersed ultrafine Pd–Ni(OH)2 hybrid NPs with numerous accessible active sites and Ni(OH)2−induced positive synergetic effects with Pd NPs considerably boost the catalytic performance for FA dehydrogenation.  相似文献   

4.
Bimetallic Cu–Ni nanoparticles (NPs) were successfully immobilized in MCM-41 using a simple liquid impregnation-reduction method. All the resulting composites Cu–Ni/MCM-41 catalysts with various contents of Cu–Ni, and in particular Cu0.2Ni0.8/MCM-41 sample, outperform the activity of monometallic Cu and Ni counterparts and pure bimetallic Cu0.2Ni0.8 NPs in hydrolytic dehydrogeneration of ammonia borane (AB) at room temperature. The Cu0.2Ni0.8/MCM-41 catalyst exhibits excellent catalytic activity with a total turnover frequency (TOF) value of 10.7 mol H2 mol catalyst−1 min−1 and a low activation energy value of 38 kJ mol−1 at room temperature. In addition, Cu0.2Co0.8/MCM-41 also exhibits excellent activity with a TOF value as high as 15.0 mol H2 mol catalyst−1 min−1. This obtained activity represents the highest catalytic active of Cu-based monometallic and bimetallic catalysts up to now toward the hydrolytic dehydrogeneration of ammonia borane (AB). The unprecedented excellent activity has been successfully achieved thanks to the strong bimetallic synergistic effects among the Cu–Ni (or Co) NPs of the composites.  相似文献   

5.
Increasing world energy demands and crises led to alternative energy production methods, such as fuel cells using hydrogen gas which is the half electrochemical reaction of water splitting process. Herein, we synthesize polyvinylpyrrolidone coated Pd, Co and PdxCo1-x (x: 0.5, 0.12, 0.23, 0.49, 0.55, 0.62) metallic and bimetallic nanoparticles (NPs) via polyol process alternative to Pt-based catalysts for hydrogen evolution reaction (HER). Detailed structural analyses of Pd, Co and PdxCo1-x NPs revealed that fcc-Pd, fcc/hcp-Co and fcc-PdCo NPs crystal structures, and the lattice parameters were calculated as 3.5358 Å for Co NPs and 3.9777 Å for Pd NPs. The average size confirmed below 9 nm via TEM imaging and XPS data confirmed the formation of a bimetallic PdCo structure. Although Pd catalyst is mostly responsible for HER process, Pd62Co38 catalysts reduced the onset potential to about 197 mV and provided greater current density. Although Ea values were slightly higher against the Pt/C (20 wt %) benchmark which is reported as 16 kJ mol−1, PdCo NPs provided considerably reduced activation energy (Ea) values compared to Pd/C catalyst of 31 kJ mol−1. The best onset potential was recorded for Pd62Co38 catalysts for HER activity which is 16 mV higher compared to commercially available Pt/C catalyst.  相似文献   

6.
The metal organic frameworks (MOFs) supported Pd catalysts for H2 generation from formic acid (FA) were synthesized in this work, via a facile excessive impregnation-low temperature reduction approach. Among the synthetic catalysts, 10% Pd/MOF-Cr (18) displayed a remarkable performance for catalyzing FA dehydrogenation in additive-free aqueous solution, and the corresponding TOFmid achieved 537.8 h?1 at 323 K. Furthermore, the bimetallic Ni–Pd alloy catalysts were prepared by the introduction of Ni in the subsequent work. Fortunately, 10% Ni0.4Pd0.6/MOF-Cr was found to be a highly active and fairly durable catalyst, exhibiting a TOFmid as high as 737.9 h?1 at 323 K with almost 100% XFA (final) and SH2, and remained 94% of its original activity in the third cyclic catalysis. Meanwhile, Ni was discovered to be indispensable in increasing the electron density of Pd, downsizing the immobilized metal particles and inhibiting the agglomeration of the loaded nanoparticles.  相似文献   

7.
Addressed herein is the catalysis of reduced graphene oxide-supported monodisperse NiPd alloy nanoparticles (NPs) (rGO-NiPd) in the hydrolytic dehydrogenation of ammonia borane (AB). This is the first example of the use of NiPd alloy NPs as catalyst in the hydrolytic dehydrogenation of AB. Monodisperse NiPd alloy NPs (3.5 nm) were synthesized by co-reduction of nickel(II) acetate and palladium(II) acetylacetonate in oleylamine (OAm) and borane-tert-butylamine complex (BTB) at 100 °C. The current recipe allowed to control the composition of NiPd alloy NPs and to study the composition-controlled catalysis of rGO-NiPd in the hydrolytic dehydrogenation of AB. Among the all compositions tested, the Ni30Pd70 was the most active one with the turnover frequency of 28.7 min−1. The rGO-Ni30Pd70 were also durable catalysts in the hydrolytic dehydrogenation of AB providing 3650 total turnovers in 35 h and reused at six times without deactivation. The detailed reaction kinetics of hydrolytic dehydrogenation of AB revealed that the reaction proceeds first order with respect to the NiPd concentration and zeroth order with respect to the AB concentration. The apparent activation energy of the catalytic dehydrogenation of AB was also calculated to be Eaapp = 45 ± 2 kJ*mol−1.  相似文献   

8.
Hydrogen (H2) generation from formic acid (FA) decomposition is a promising route in practical application of hydrogen energy. As a promising H2 supplier, besides the advantage of high H2 content and excellent stability, FA can also be used as a mild reducing agent. Herein, an in-situ prepared NiAuPd nanoparticles (NPs) supported on amine-functionalized carbon nanotubes (NiAuPd/NH2-CNTs) with FA as the reducing agent is successfully developed at room temperature. The as-prepared NiAuPd/NH2-CNTs are directly used for the catalytic decomposition of FA, exhibiting excellent activity and 100% H2 selectivity with the initial turnover frequency (TOFinitial) value of 699.1 and 3006.1 mol H2 mol Pd-1 h-1 at 303 and 333 K, respectively. Moreover, the additive sodium formate (SF) can further facilitate the reduction process and enhance the catalytic performance, with the TOFinitial value of 4391.1 mol H2 mol Pd-1 h-1 at 333 K, which are comparable to most of the reported heterogeneous catalysts with the complicated post-treatment. The excellent catalytic performance of NiAuPd/NH2-CNTs is mainly attributed to the high dispersion of NPs and the boost effect of -NH2 group on O–H cleavage. This work provides a feasible strategy to design in-situ prepared catalysts for the efficient high-quality H2 generation from FA for fuel cells application.  相似文献   

9.
Tuning nickel-based catalyst activity and understanding electrolyte and ionomer interaction for oxygen evolution reaction (OER) is crucial to improve anion exchange membrane (AEM) water electrolyzers. Herein, an investigation of multimetallic Ni0.6Co0.2Fe0.2 OER activity, coupled with in-situ Raman spectroscopy to track dynamic structure changes, was carried out and compared to other Ni catalysts. The effect of KOH concentration, KOH purity, ionomer type, and electrolyte with organic cations was evaluated. The Ni0.6Co0.2Fe0.2 catalyst achieved 10 mA/cm2 at 260 mV overpotential with stability over 50 h and 5000 cycles in 1 M KOH. In-situ Raman spectroscopy showed that Ni0.6Co0.2Fe0.2 activity originates from promoting Ni(OH)2/NiOOH transformation at low potentials compared to bi- and mono-metallic nickel-based catalysts. Fumion anion ionomer in the catalyst inks led to a lower OER activity than catalysts with inks containing Nafion ionomer. The OER activity of Ni0.6Co0.2Fe0.2 is adversely influenced in the presence of fumion anion ionomer and benzyltrimethylammonium hydroxide (BTMAOH) with possible phenyl oxidation under applied high anodic potentials. The alkaline AEM water electrolyzer circulating 1 M KOH electrolyte, with a Pt/C cathode and a Ni0.6Co0.2Fe0.2 anode, achieved 1.5 A/cm2 at 2 V.  相似文献   

10.
The introduction of catalyst on anode of solid oxide fuel cell (SOFC) has been an effective way to alleviate the carbon deposition when utilizing biogas as the fuel. A series of La0.6Sr0.4Co1-xNixO3-δ (x = 0, 0.2, 0.4, 0.6, 0.8) oxides are synthesized by sol-gel method and used as catalysts precursors for biogas dry reforming. The phase structure of La0.6Sr0.4Co1-xNixO3-δ oxides before and after reduction are characterized by X-ray diffraction (XRD). The texture properties, carbon deposition, CH4 and CO2 conversion rate of La0.6Sr0.4Co1-xNixO3-δ catalysts are evaluated and compared. The peak power density of 739 mW cm?2 is obtained by a commercial SOFC with La0.6Sr0.4Co0.4Ni0.6O3-δ catalyst at 850 °C when using a mixture of CH4: CO2 = 2:1 as fuel. This shows a great improvement from the cell without catalyst for internal dry reforming, which is attributed to the formation of NiCo alloy active species after reduction in H2 atmosphere. The results indicate the benefits of inhibiting the carbon deposition on Ni-based anode through introducing the La0.6Sr0.4Co0.4Ni0.6O3-δ catalyst precursor. Additionally, the dry reforming technology will also help to convert part of the exhaust heat into chemical energy and improve the efficiency of SOFC system with biogas fuel.  相似文献   

11.
Generally, white-flowering horse-chestnut seed (WFHC) found in roadsides, parks and gardens, which spills around and causes environmental pollution, is defined as waste-bio material. This study is quite remarkable as it gives WFHC a new field of usage and literally prioritizes the environment. Here, waste-bio WFHC was tested as supporter for tri-metallic RuNiPd nanoclusters in the eco-friendly dehydrogenation of dimethylamine-borane (DMAB). Core-shell-looking tri-metallic RuNiPd@WFHC, with 264.09 ± 45.55 nm particle size, were in-situ synthesized throughout dehydrogenation of DMAB at 35.0 ± 0.1 °C. The WFHC and tri-metallic Ru2.00Ni1.86Pd1.00@WFHC NCs were characterized by advanced analysis and their surface morphologies were studied in detail using adsorption models. The N2 adsorption-desorption and logarithmic-Freundlich plots indicated that surface morphologies have heterogeneous multi-layer and typical Type-III isotherm with mesoporous surfaces. Also, detailed kinetic studies were actualized on the dehydrogenation of DMAB catalyzed by tri-metallic Ru2.00Ni1.86Pd1.00@WFHC NCs with 158 h?1 TOF value.  相似文献   

12.
Environmentally friendly overall water splitting electrocatalysts can be exploited through construction of efficient heterogeneous interfaces. Flexible preparation of lattice-matching Ni2P–Co2P heterointerfaces is exploited to promote electrochemical activity for overall water splitting because of the outstanding electrical conductivity of Co2P and admirable durability of Ni2P. Density functional theory calculations demonstrate that construction of lattice-matching Ni2P–Co2P heterogeneous interfaces and the regulation of density of states between the heterogeneous interfaces can effectively optimize the water adsorption energy. Hence, a series of NixP-Co2P hybrid materials were in site grown on nickel foam through hydrothermal synthesis and phosphorization approach. What is noteworthy is that the Ni2P–Co2P-0.5//Ni2P–Co2P-1 electrode couple presents superior electrochemical performance with only 1.60 V cell voltage to obtain a current density of 10 mA cm?2 under alkaline condition. In addition, the Ni2P–Co2P-0.5//Ni2P–Co2P-1 electrode couple display superior durability over 15 h at large current densities of 30 mA cm?2 during water electrolysis process. The construction of heterostructures is conducive to the regulation of state density and the maximization of synergistic catalytic effect. The work provides a novel idea for the exploitation of highly efficient and robust water electrolysis catalysts and this work might be a new breakthrough for the construction of lattice-matching hybrid structures.  相似文献   

13.
LaY1.9Ni10.2−xAlxMn0.5 (x = 0–0.6) hydrogen storage alloys have been prepared using a vacuum induction-quenching furnace and annealed at 1148 K for 16 h. The alloys are composed of Ce2Ni7- and Gd2Co7-type phases and an extra Pr5Co19-type phase appears when x = 0.6. Aluminum tends to enter the inner AB5 slabs of Ce2Ni7- and Gd2Co7-type phases and promotes the generation of new AB5 slabs. The maximum discharge capacity of the alloy electrodes is stable at approximate 375 mA h/g as x increases from 0 to 0.4 and then decreases to 364.2 mA h/g (x = 0.6). The cycling capacity retention rate at the 300th cycle is 59.4%, 62.0%, 62.7% and 58.7% for x = 0, 0.2, 0.4 and 0.6, respectively, indicating that the function of aluminum on improving the cyclic stability of the alloy electrodes is limited. The main reason is that the similar pulverization degrees of the alloys are presented during the charge/discharge cycles.  相似文献   

14.
《Journal of power sources》2006,159(2):1328-1333
Spherical Li[Ni0.8Co0.2−xMnx]O2 (x = 0, 0.1) with phase-pure and well-ordered layered structure have been synthesized by heat-treatment of spherical [Ni0.8Co0.2−xMnx](OH)2 and LiOH·H2O precursors. The structure, morphology, electrochemical properties, and thermal stability of Li[Ni0.8Co0.2−xMnx]O2 (x = 0, 0.1) were studied. The average particle size of the powders was about 10–15 μm and the size distribution was narrow due to the homogeneity of the metal hydroxide [Ni0.8Co0.2−xMnx](OH)2 (x = 0, 0.1). The Li[Ni0.8Co0.2−xMnx]O2 (x = 0, 0.1) delivered a discharge capacity of 197–202 mAh g−1 and showed excellent cycling performance. Compared to Li[Ni0.8Co0.2]O2, Li[Ni0.8Co0.1Mn0.1]O2 exhibited greater thermal stability resulting from improved structural stability due to Mn substitution.  相似文献   

15.
In this research, three Pd decorated Ni and Co catalyst nanoparticle were synthesized on reduced graphene oxide (rGO) supports are synthesized through a facile solvothermal procedure. Borohydride oxidation reaction (BOR) activity and performance of prepared electrocatalysts respect to NaBH4 oxidation is evaluated by various electrochemical techniques in the three-electrode and the fuel cell configuration. Among the prepared catalysts, Pd10–Ni45–Co45/rGO exhibits the highest BOR activity. The cyclic voltammograms showed that the measured current at 0.5 V for the electrode of Pd10–Ni45–Co45/rGO is as much as 108 mA cm−2 higher than Pd10–Ni90/rGO and 185 mA cm−2 higher than Pd10Co90/rGO. X-ray diffraction (XRD), transmission electron microscopy (TEM), Fourier transform infrared (FT-IR) spectra were employed to study the morphology and crystal structure of the prepared catalyst. The results of DBFC test show that the Pd10–Ni45–Co45/rGO nanoparticles as anodic catalyst, enhanced power density to 50.4 mW cm−2 which is 10.5% and 45.2% higher than power density of DBFCs with Pd10–Ni90/rGO (45.6 mW cm−2) and Pd10Co90/rGO (34.7 mW cm−2) anode catalysts, respectively. These results indicate that the competency of operating procedure for assembling nickel alloys electrodes can improve the activity of the prepared catalysts for BOR considerably.  相似文献   

16.
In recent years, hydrazine borane (HB) as an excellent hydrogen material has been extensively studied by researchers because of its substantial hydrogen content (15.4 wt%), favourable chemical stability, eco-friendliness and being easy to synthesize. With Higher activity, catalysts of HB dehydrogenation will undoubtedly be more desirable for practical applications. In this work, CoIr nanoparticles (NPs) are successfully immobilized on TiO2 substrate, achieving outstanding catalytic performance and 100% conversion for HB dehydrogenation. Particularly, Co0.6Ir0.4/TiO2 can complete the reaction for HB dehydrogenation at 323 K within 32 s (0.53 min), and shows a fairly high turnover frequency (TOF) value (5625 h?1), which is higher than the values achieved by most Ni-based catalysts reported so far in the same condition. This superior catalytic performance can be attributed to uniform dispersion of metal NPs with small size and strong interaction among the CoIr NPs and the substrate. It is unquestionable that our work will help to promote the use of HB as a promising hydrogen storage material for fuel cells.  相似文献   

17.
Non-noble Cu@FeCo core–shell nanoparticles (NPs) containing Cu cores and FeCo shells have been successfully in situ synthesized via a facile chemical reduction method. The NPs exerted composition-dependent activities towards the catalytic hydrolysis of ammonia borane (NH3BH3, AB). Among them, the Cu0.3@Fe0.1Co0.6 NPs showed the best catalytic activity, with which the max hydrogen generation rate of AB can reach to 6674.2 mL min−1 g−1 at 298 K. Kinetic studies demonstrated that the hydrolysis of AB catalysed by Cu0.3@Fe0.1Co0.6 NPs was the first order with respect to the catalyst concentration. The activation energy (Ea) was calculated to be 38.75 kJ mol−1. Furthermore, the TOF value (mol of H2. (mol of catalyst. min)−1) of Cu0.3@Fe0.1Co0.6 NPs was 10.5, which was one of the best catalysts in the previous reports. The enhanced catalytic activity was largely attributed to the preferable synergistic effect of Cu, Fe and Co in the special core–shell structured NPs.  相似文献   

18.
Formic acid (FA, HCOOH), a convenient and safe hydrogen storage material, has the great potential for fuel cell applications. However, hydrogen generation of FA is inefficient in the presence of heterogeneous catalysts at relatively low temperatures, which remains a big challenge. Herein, La2O3-modified highly dispersed AuPd alloy nanoparticles (AuPdLa2O3) with small particle size have been successfully anchored on carbon nanotubes (CNTs) by a facile co-reduction route. Moreover, the catalyst exhibits excellent catalytic activity and 100% hydrogen selectivity for hydrogen generation in the formic acid/sodium formate (FA/SF) system with the initial turnover frequency (TOF) value of 589 mol H2 mol?1 catalyst h?1 at 50 °C and 280 mol H2 mol?1 catalyst h?1 even at room temperature (25 °C). The present Au0.3Pd0.7-(La2O3)0.6/CNTs with superior catalysis on FA dehydrogenation without any CO generation at room temperature can not only pave the way for practical application of hydrogen storage system, but also can be extended to other catalysis system.  相似文献   

19.
Current paper comprises the electrodeposition of nanostructured porous Co1−xNix layered double hydroxide (Co1−xNix LDHs) thin films on to stainless steel substrate by a potentiodynamic mode. The compositional impacts on the various properties of Co1−xNix LDHs are examined via structural, morphological, surface wettability and electrochemical studies. The nanocrystalline Co1−xNix LDHs thin films possess varying porous, nanoflake like morphology and superhydrophilic behavior by the composition influence. Electrochemical studies demonstrate the supercapacitive performance of Co1−xNix LDHs thin film electrodes. The maximal specific capacitance for Co1−xNix LDHs electrode is found to be ∼1213 F g−1 for composition Co0.66Ni0.34 LDH in 2 M KOH electrolyte at 5 mV s−1 scan rate owing specific energy of 104 Whkg−1, specific power of 1.44 kW kg−1 with ∼94% of coulomb efficiency and stability of electrode retained to 77% after 10,000th cycle. The high capacitance retention proposes the deposited Co1−xNix LDHs thin film as promising contender for supercapacitor applications.  相似文献   

20.
The hydrogen economy is a proposed system that utilizes hydrogen to deliver energy. For the realization of this concept, how to safely, controllably and reversibly store and release hydrogen are critical problems which must be resolved. Metal alloys combined with suitable support materials are widely applied to various catalytic reactions. Here palladium nickel bimetallic nanoparticles doped with cerium oxide on a reduced graphene oxide (rGO) support were prepared by combining metal ion precursors and graphene oxide in a one-pot co-reduction approach. The as-received catalysts were characterized by XRD, TEM, SEM, XPS and ICP-OES, and the results revealed that PdNi-CeO2 nanoparticles were uniform dispersal on rGO. The as-synthesized PdNi-CeO2/rGO had been adopted as a heterogeneous catalyst for the hydrogen evolution from the hydrolysis of ammonia borane (NH3BH3, AB) at room temperature. Kinetically, the hydrogen-release rate was first-order with the increased concentration of catalysts. The optimized catalyst of Pd0.8Ni0.2-CeO2/rGO with the CeO2 content of 13.9 mol% exhibited an excellent activity with a turnover frequency value of 30.5 mol H2 (mol catalyst)?1 min?1 at 298 K, and a low apparent activation energy (Ea) of 37.78 kJ mol?1. The robust catalytic performance of the Pd0.8Ni0.2-CeO2/rGO is attributed to the uniform controlled nanoparticle size, the synergic effect between the nanoparticles bimetallic properties, and the effective charge transfer interactions between the metal and support.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号