首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 23 毫秒
1.
In this study, ZnCo2S4 (ZCS) nanoparticles were coupled on the surface of TiO2 by simple solvothermal method to form S-scheme heterojunction. Compared with ZCS and TiO2, the photocatalytic performance of ZCS/TiO2 under simulated sunlight is significantly improved, and its hydrogen evolution efficiency reaches 5580 μmol·g?1·h?1 with the apparent quantum efficiency (AQY) up to 11.5% at 420 nm, which is 88.3 times and 54.3 times that of TiO2 and ZCS, respectively. Moreover, ZCS/TiO2 also has excellent performance in the photocatalytic degradation of tetracycline (TC). The enhancement of photocatalytic performance of ZCS/TiO2 is mainly due to S-scheme heterojunction. On the one hand, the S-scheme electron transfer path not only improves the electron-hole separation efficiency, but also improves the charge transfer efficiency. On the other hand, ZCS significantly enhances the visible light absorption of ZCS/TiO2. The photocatalytic mechanism and S-scheme heterojunction structure is confirmed by XPS, EPR, ultraviolet photoelectron spectroscopy (UPS) and energy band structure. This work provides a new idea for designing and constructing S-scheme heterojunction to improve the performance of photocatalytic hydrogen evolution and TC degradation.  相似文献   

2.
A novel anthraquinone (AQ) integrated and S-scheme-based NiTiO3-gC3N4 (NT-gCN) photocatalytic system is synthesized with an improved electron transfer rate for hydrogen production. Materials characterization using spectroscopic techniques reveal the intimate heterojunction interface between NT and gCN as well as integration of AQ with the binary composite. The synthesized AQ-NT-gCN photocatalyst exhibits a significantly enhanced H2 evolution rate (576 μmol g?1 h?1), which is ~22 and 33% higher than that of NT-gCN and gCN, respectively, attributed to the spatial separation of charge carriers expedited by AQ. The radical trapping test data provide evidence for the S-scheme charge transfer mechanism in AQ-NT-gCN. The present study opens a new avenue for developing an S-scheme heterojunction by integrating binary composite with an organic molecule to improve the solar to energy conversion efficiency.  相似文献   

3.
Schottky junction and p-n heterojunction are widely employed to enhance the charge transfer during the photocatalysis process. Herein, Cu and Cu3P co-modified TiO2 nanosheet hybrid (Cu–Cu3P/TiO2) was fabricated using an in situ hydrothermal method. The ternary composite achieved the superior H2 evolution rate of 6915.7 μmol g?1 h?1 under simulated sunlight, which was higher than that of Cu/TiO2 (4643.4 μmol g?1 h?1) and Cu3P/TiO2 (6315.8 μmol g?1 h?1) and pure TiO2 (415.7 μmol g?1 h?1). The enhanced activity can be attributed to the collaboration effect of Schottky junction and p-n heterojunction among Cu/TiO2 and Cu3P/TiO2, which can harvest the visible light, reduce the recombination of charge carriers and lower the overpotential of H2 evolution, leading to a fast H2 evolution kinetics. This work develops a feasible method for the exploration of H2 evolution photocatalyst with outstanding charge separation properties.  相似文献   

4.
In this work, photocatalysts with a novel S-scheme heterojunction were fabricated by coupling MOF-derived TiO2 with porous g-C3N4 (MTO/PCN). The S-scheme heterojunction with matching band gap possesses different advantageous properties, which can not only inhibit photo-generated charge recombination, but also reserve outstanding redox ability. As expected, superior hydrogen evolution efficiency of 40-MTO/PCN was obtained in a TEOA-containing aqueous solution and pure water, which were 5252.9 and 974.6 μmol h−1 g−1, respectively. Meanwhile, the hybrid can also serve as a bifunctional catalyst for H2 generation (2137.3 μmol h−1 g−1) and organic contaminant removal (the RhB purification efficiency: 35.24%). This work furnishes a feasible method for devising bifunctional photocatalysts that can simultaneously produce hydrogen and purify wastewater to provide both energy-saving and environmental restoration functions.  相似文献   

5.
Constructing 2D/2D heterojunction photocatalysts has attracted great attentions due to their inherent advantages such as larger interfacial contact areas, short transfer distance of charges and abundant reaction active sites. Herein, 2D/2D CoP/CdS heterojunctions were successfully fabricated and employed in photocatalytic H2 evolution using lactic acid as sacrificial reagents. The multiple characteristic techniques were adopted to investigate the crystalline phases, morphologies, optical properties and textual structures of heterojunctions. It was found that integrating 2D CoP nanosheets as cocatalysts with 2D CdS nanosheets by Co–S chemical bonds would significantly boost the photocatalytic H2 evolution performances, and the 7 wt% 2D/2D CoP/CdS heterojunction possessed the maximal H2 evolution rate of 92.54 mmol g?1 h?1, approximately 31 times higher than that of bare 2D CdS nanosheets. Photoelectrochemical, steady photoluminescence (PL) and time-resolved photoluminescence (TRPL) measurements indicated that there existed an effective charge separation and migration over 2D/2D CoP/CdS heterojunction, which then markedly lengthened the photoinduced electrons average lifetimes, retarded the recombination of charge carriers, and caused the dramatically boosted photocatalytic H2 evolution activity. Moreover, the density functional theory (DFT) calculation further corroborated that the efficient charge transfer occurred at the interfaces of CoP/CdS heterojunction. This present research puts forward a promising strategy to engineer the 2D/2D heterojunction photocatalysts endowed with an appealing photocatalytic H2 evolution performance.  相似文献   

6.
Solar-driven photocatalytic hydrogen generation by splitting water molecules requires an efficient visible light active photocatalyst. This work reports an improved hydrogen evolution activity of visible light active TiO2-x photocatalyst by introducing reduced graphene oxide via an eco-friendly and cost-effective hydrothermal method. This process facilitates graphene oxide reduction and incorporates intrinsic defects in TiO2 lattice at a one-pot reaction process. The characteristic studies reveal that RGO/TiO2-x nanocomposites were sufficiently durable and efficient for photocatalytic hydrogen generation under the visible light spectrum. The altered band gap of TiO2-x rationally promotes the visible light absorption, and the RGO sheets present in the composites suppresses the electron-hole recombination, which accelerates the charge transfer. Hence, the noble metal-free RGO/TiO2-x photocatalyst exhibited hydrogen production with a rate of 13.6 mmol h?1g?1cat. under solar illumination. The appreciable photocatalytic hydrogen generation activity of 947.2 μmol h?1g?1cat with 117 μAcm?2 photocurrent density was observed under visible light (>450 nm).  相似文献   

7.
In this work, amorphous cobalt sulfide with a sulfur-rich structure (sr-CoSx) is developed as the cocatalyst for photocatalytic hydrogen evolution. Through a facile hydrothermal reaction, sr-CoSx nanodots are in situ grown on TiO2 to obtain a heterojunction photocatalyst (sr-CoSx/TiO2). The as-prepared photocatalyst exhibits remarkable improved hydrogen evolution performance compared with TiO2. Under the irradiation of xenon lamp, the hydrogen evolution rate of sr-CoSx/TiO2 can reach 507 μmol h?1 g?1, which is about 121 times that of pristine TiO2, indicating that sr-CoSx is a highly efficient cocatalyst to promote hydrogen evolution on TiO2. Moreover, sr-CoSx/TiO2 exhibits better performance than crystalline CoS2 or amorphous CoS modified TiO2, suggesting the important role of sulfur-rich structure and amorphous state in promoting the cocatalytic effect. Electrochemical and photoluminescence measurements show the most efficient carrier separation between sr-CoSx and TiO2, which also contributes to its high photocatalytic hydrogen evolution performance.  相似文献   

8.
Photocatalysts with abundant active sites are essential for photocatalytic H2 evolution from water. Herein, Ni0.85Se-deposited g-C3N4 was obtained by a physical solvent evaporation method. The investigation shows that Ni0.85Se with unsaturated active Se atoms can significantly improve the photocatalytic activity of g-C3N4, and the H2 production rate of Ni0.85Se/g-C3N4 can reach 8780.3 μmol g?1 h?1, which is 3.5 and 92.9 times higher than that of Ni0.85+xSe/g-C3N4 (2497.9 μmol g?1 h?1) and pure g-C3N4 (94.5 μmol g?1 h?1), respectively. This improvement can be attributed to the quick charge transfer between Ni0.85Se and g-C3N4 with S-scheme heterojunction feature based on a series of trapping experiments and photoelectrochemical analysis. Moreover, abundant unsaturated Se atoms could provide more H2 evolution active sites. This work sheds light on the construction of heterojunctions with abundant active sites for H2 production.  相似文献   

9.
One key challenge in photocatalytic hydrogen production is how to construct high-performance photocatalyst. Covalent triazine framework (CTF) based polymers as photocatalysts show great application potential because of their good photocatalytic activity, high chemical stability, tunable electronic and optical properties, and easy synthesis process. In this paper, we designed the ternary Z-scheme heterojunction Au@TiO2-X%TrTh based on CTF polymer TrTh, TiO2 and Au nanoparticle, which exhibit higher photocatalytic hydrogen production rate compared with the corresponding binary heterojunction Au@TiO2 and TiO2-12%TrTh. The results of photocatalytic hydrogen production show that the optimized Au@TiO2-12%TrTh has a remarkable hydrogen production rate of 4288.54 μmol g?1 h?1, which is about 312.3 times of Au@TiO2 and 9.1 times of the TiO2-12%TrTh. The enhanced hydrogen production activity of the ternary heterojunction comes from the local surface plasmonic resonance effect of Au nanoparticle, lower recombination efficiency of photogenerated electron-holes pairs and Z-scheme electron transfer pathway of Au@TiO2-12%TrTh. The work provides a new strategy for designing efficient and practical photocatalyst.  相似文献   

10.
A novel hierarchical TiO2 spheroids embellished with g-C3N4 nanosheets has been successfully developed via thermal condensation process for efficient solar-driven hydrogen evolution and water depollution photocatalyst. The photocatalytic behaviour of the as-prepared nanocomposite is experimented in water splitting and organic pollutant degradation under solar light irradiation. The optimal ratio of TiO2 spheroids with g-C3N4 in the nanocomposite was found to be 1:10 and the resulting composite exhibits excellent photocatalytic hydrogen production of about 286 μmol h?1g?1, which is a factor of 3.4 and 2.3 times higher than that of pure TiO2 and g-C3N4, respectively. The outstanding photocatalytic performance in this composite could be ascribed as an efficient electron-hole pair's separation and interfacial contact between TiO2 spheroids with g-C3N4 nanosheets in the formed TiO2/g-C3N4 nanocomposite. This work provide new insight for constructing an efficient Z-scheme TiO2/g-C3N4 nanocomposites for solar light photocatlyst towards solar energy conversion, solar fuels and other environmental applications.  相似文献   

11.
To improve the visible light utilization and photogenerated carriers separation, carbon self-doped carbon nitride (C-CN) supported TiO2 photocatalysts were synthesized via a designed two-step strategy. After carbon self-doping, the colloid TiO2 were in-situ deposited on C-CN surface and crystalized by calcination. Simultaneously, the bulk C-CN structure was thermally exfoliated to nanosheet morphology. This strategy ensured the saturated deposition of colloid TiO2 nanoparticles on C-CN nanosheets to form well-constructed heterostructure with sufficient interfacial contact. The as-prepared TiO2/C-CN (TCN) heterojunction photocatalysts showed enhanced visible light absorption capability, resulting in impressively high hydrogen production efficiency as 212.7 μmol h−1, which was 10.8 times higher than that of CN. The remarkably enhanced photocatalytic performance may be mainly ascribed to synergetic effect of carbon self-doping and TiO2 deposition on the improved visible light utilization and photogenerated carriers separation. The probable mechanism in such well-constructed heterojunction photocatalysts was proposed based on the structural analysis, electrical and photoelectrical properties, and photocatalytic process. The proposed strategy may be extended to the preparation of diverse heterojunction photocatalysts with excellent performance for solar energy conversion.  相似文献   

12.
Constructing S-scheme heterojunction is regarded as an effective mode to motivate excellent photocatalytic performance for hydrogen generation. This paper prepares NiTiO3/CdIn2S4 S-scheme heterostructure photocatalyst by hydrothermal method successfully. In the experiments, 20 wt% NiTiO3/CdIn2S4 has the supreme photocatalytic activity with the H2 generation rate of 5168.6 μmol g−1 h−1 and the apparent quantum yield (AQY) of 5.14% at 420 nm, approximately 7.7 times of pure CdIn2S4. Through the phase characterization analyses, NiTiO3 and CdIn2S4 successfully compounded, with NiTiO3 nanoparticles wrapping around CdIn2S4 microspheres to form the irregular clumps. Further analyses of performance reveal the larger specific surface area, wider absorption region, faster charge transfer rate, outstanding photostability and recyclability for 20 wt% NiTiO3/CdIn2S4, all of which play the significant role in photocatalytic hydrogen evolution activity. Finally, a plausible S-scheme photocatalytic mechanism for NiTiO3/CdIn2S4 is proposed. This study provides a novel and effective S-scheme photocatalyst for hydrogen generation from water splitting.  相似文献   

13.
A series of SnS2/ZnIn2S4 (x-SS/ZIS) photocatalysts with different mass ratios of SnS2 were prepared by a hydrothermal method. The resulted composites were used for photocatalytic hydrogen evolution under visible light excitation. All the SS/ZIS composites exhibited significantly enhanced photocatalytic activity for H2 evolution. Obviously, the highest H2 evolution rate of 769 μmol g?1 h?1 was observed over 2.5-SS/ZIS, which was approximately 10.5 times that of the ZnIn2S4 (73 μmol g?1 h?1). The enhanced photocatalytic performance was attributed to the successful construction of SnS2/ZnIn2S4 heterojunctions, leading to rapid charge separation and fast transfer of the photo-generated electrons and holes under light irradiation. On the basis of PL, electrochemical impedance spectroscopy (EIS), photocurrent measurements and the H2 evolution tests, a plausible photocatalytic mechanism was proposed.  相似文献   

14.
Although graphitic carbon nitride is a promising photocatalyst in the field of energy conversion and environmental purification, the intrinsic properties like excitonic effects and sluggish charge transfer restrict further photocatalytic applications. To circumvent these limitations, the novel all-organic heterojunction photocatalysts were constructed by anchoring organic carbon dots (O-dots) on porous graphitic carbon nitride nanosheets (O-dots/CNS). Results demonstrated that excitons can be e?ectively dissociated into electrons and holes at the interface of O-dots/CNS heterojunction, followed by holes injected to O-dots and electrons accumulated in CNS to realize efficient charge separation. Consequently, the O-dots/CNS with the optimized hydrogen (H2) evolution performance could be reached 1564.5 μmol h?1g?1 under the visible light irradiation. This work not only presents new ideas for rational design photocatalytic reaction system from exciton and charge carrier, but also broaden the applications of this new kind of organic dots in the field of energy conversion.  相似文献   

15.
Rutile TiO2 nanosheets were prepared by a simple solvothermal process, and Cu was loaded on the surface of TiO2 nanosheets using the in situ photo-deposition method. Meanwhile, photocatalytic H2 evolution from water over the as-prepared TiO2 nanosheets loaded with Cu was explored using methanol as a sacrificial reagent. The results indicate that the TiO2 nanosheets loaded with Cu is an efficient photocatalyst under UV irradiation. During the first 5 h, a rate of H2 evolution of approximately 22.1 mmol g−1 h−1 was achieved under optimal conditions. Furthermore, for practical purposes, the photocatalytic hydrogen evolution was studied as a function of content of Cu, pH of solution, concentration of methanol and dosage of photocatalyst, respectively. At last, the photocatalytic mechanism was preliminarily discussed.  相似文献   

16.
Visible-light-induced heterostructure photocatalysts have been regarded as promising candidates in clean energy production and environmental treatment of organic pollutants. In this study, we have prepared nanocomposites of V2O5/N-deficient g-C3N4 (VO/Ndef-CN), which have been characterized by a variety of techniques. The as-synthesized nanocomposites show efficient bifunctional photocatalytic properties toward hydrogen generation and pollutants degradation (dye and antibiotic). The optimized 5VO/Ndef-CN photocatalyst exhibits improved photoactivity for H2 production (5892 μmol g?1 h?1), with a high quantum yield of 6.5%, and fast degradation of organic pollutants, as well as high photocatalytic stability under visible light irradiation. The high photocatalytic efficiency is due to the presence of N defects and S-scheme heterojunction formation, which leads to rapid charge separation, enhanced visible-light absorption, and increased active sites. Furthermore, the possible activity-enhanced mechanism and the photodegradation pathway are proposed based on the experimental and density functional theory (DFT) investigations.  相似文献   

17.
Structured efficient and effective photocatalysts was crucial to improve photocatalytic efficiency. In this work, regular octahedron Cu-MOFs and Mn0.05Cd0.95S nanoparticles were adopted to constitute a S-scheme heterojunction. The Cu-MOFs/Mn0.05Cd0.95S (5 wt%) composite exhibited powerful photocatalytic hydrogen evolution activity of 547.5 μmol after 5 h under visible light irradiation (λ > 420 nm), which was ascribed to structure a S-scheme heterojunction brought great redox capacity and efficient separation and transfer of electrons and holes. The SEM and HRTEM results presented close contact of the Cu-MOFs and Mn0.05Cd0.95S. The PL, TRPL, and electrochemical properties further indicated that the composite photocatalysts had competent photocatalytic performance. The UV–vis DRS indicated that the composite catalyst had excellent light absorption capacity. It was confirmed that the composite photocatalysts owned excellent chemical stability by the XPS, FT-TR, and XRD. The S-scheme process can eliminate useless electrons and holes and provide more electrons to participate H2 evolution reduction. This work contributed new strategy to rational structure heterojunction photocatalysts for hydrogen evolution.  相似文献   

18.
A TiO2 nanotube-based nanoreactor was designed and fabricated by facile two steps synthesis: firstly, hydrothermal synthesized SrTiO3 was deposited on TiO2 nanotubes (TiO2NTs). Secondly, the Au nanoparticles (NPs) were encapsulated inside the TiO2NTs followed by vacuum-assisted impregnation. The as-synthesized composites were characterized using Transmission electron microscopy (TEM), X-ray powder diffraction (XRD), X-ray photoelectron spectroscopy (XPS), Photoluminescence spectra (PL) and Ultraviolet–visible absorption spectroscopy (UV–vis). The photocatalytic performance was evaluated by the hydrogen evolution reaction. The results revealed that the SrTiO3 modified TiO2NTs confined Au NPs (STO-TiO2NTs@Au) achieved an enhanced hydrogen evolution rate at 7200 μmol h−1 g−1, which was 2.2 times higher than that of bald TiO2NTs@Au at 3300 μmol h−1 g−1. The improved photocatalytic activity could be attributed to the synergistic effect of the electron-donating of SrTiO3 and TiO2NTs confinement. The as-designed nanoreactor structure provides an example of efficient carriers' separation photocatalyst.  相似文献   

19.
Modifying the texture of carbon nitride to adjust its physicochemical performance is a fascinating method for achieving high photocatalytic activity. Herein, we synthesized 3D porous carbon nitride with ultra-thin nanosheets by using cyanuric acid-melamine supramolecular and ionic liquid as precursor and template, respectively. The ionic liquid adjusts the morphology of materials and induces the carbon residue into the porous channels owing to its incomplete degradation. The 3D porous framework makes carbon nitride reflect the enhanced surface area, exposes adequate reaction sites, and offers a pathway for charge transport. And carbon residue and ultra-thin nanosheets further promote the photogenerated carriers transport and reduce the recombination rate of charge carriers. Consequently, 3D porous carbon nitride with ultra-thin nanosheets exhibit outstanding and stable hydrogen evolution under visible light irradiation. Significantly, as-fabricated sample CN-100 reflects an improved H2 generation rate, up to 17,028 μmol h?1 g?1, which is 12 times higher than that of CN (1412 μmol h?1 g?1). The present work offers a unique synthesis strategy to develop the novel photocatalyst with efficient photocatalytic performance.  相似文献   

20.
In this work, a dual p-n heterojunction of Cu2O/Ni(OH)2/TiO2 with type-II band alignment and matched build-in electric field was fabricated. This dual p-n heterojunction promoted the separation and transfer of charge carriers, which is much more efficient than individual p-n heterojunction. Photocatalytic hydrogen evolution under the simulated sunlight shows a high rate of 6145 μmol g−1 h−1 for Cu2O/Ni(OH)2/TiO2, which is 1.9 and 2.7 times that of Ni(OH)2/TiO2 and Cu2O/TiO2, respectively. The apparent quantum yield of Cu2O/Ni(OH)2/TiO2 is about 20.2% under the irradiation of monochromatic light (λ = 420 nm). The recycling test of hydrogen evolution also verified a high stability for this dual heterojunction. The type-II band alignment and matched build-in electric field was confirmed, which accelerate the migration of charge carriers. The width of space-charge layer was calculated and proved that the p-n junctions in Cu2O/Ni(OH)2/TiO2 are fully-depleted, which largely reduced the bulk recombination of charge carriers. The synergistic effect of the improved visible-light response, type-II band alignment, matched build-in electric field, and fully-depleted space-charge layer contributes to the enhanced photocatalytic hydrogen evolution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号