首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In this work, side view images of liquid–gas–solid interfaces are observed during the evaporation of liquid water droplets on various commercially available untreated gas diffusion layers (GDLs). The change in contact diameter as a function of evaporative volume loss is measured to quantify the unpinning rates of micro-sized droplets. This contact diameter pinning behaviour during evaporation is correlated to the material topography, which is quantified through profilometry measurements. The carbon fibre paper with the smallest average roughness (15 μm) exhibits the strongest degree of pinning (unpinning at a rate of 0.13 mm/μL). Higher average surface roughnesses for felt (30 μm) and cloth yarn (32 μm) result in higher unpinning rates, 0.21 mm/μL and 0.19 mm/μL, respectively. These results indicate that common GDL materials exhibit Cassie–Baxter wetting behaviour, and reduced GDL roughness promotes droplet pinning. The material-specific droplet contact diameter progression should be considered during GDL selection for polymer electrolyte membrane (PEM) fuel cells. This work provides insight into the effect of GDL material properties on gas channel water management, as water droplets are expected to experience similar pinning to that observed in this work within the cathode gas channels of a PEM fuel cell.  相似文献   

2.
This work examines silicon micro-hole arrays (Si-MHA) as a gas diffusion layer (GDL) in a micro-fuel cell that was fabricated using micro-electro-mechanical systems (MEMS) fabrication technique. Pt was deposited on the surface of the Si-MHA, to increase the conductivity of the micro-fuel cell. The Si-MHA with three micro-holes, replaces the traditional GDL, and the performance of the micro-proton exchange membrane fuel cell was discussed. Wet etching was performed on a 500 μm-thick layer of silicon to yield fuel channels with a depth of 450 μm and a width of 200 μm. The Si-MHA formed by deep reactive ion etching (DRIE) in the fabricated structure had diameters of 10 μm, 30 μm and 50 μm; the thickness of the structure was 50 μm.  相似文献   

3.
Polymer electrolyte-based unitized reversible fuel cells (URFCs) combine the functionality of a fuel cell and an electrolyzer in a single device. In a URFC, titanium (Ti)-felt is used as a gas diffusion layer (GDL) of the oxygen electrode, whereas typical carbon paper is used as a GDL of the hydrogen electrode. Different samples of Ti-felt with different structural properties (porosity and fiber diameter) and PTFE content were prepared for use as GDLs of the oxygen electrode, and the relation between the properties of the GDL and the fuel cell performance was examined for both fuel cell and electrolysis operation modes. Experimental results showed that the cell with a Ti-felt GDL of 80 μm fiber diameter had the highest round-trip efficiency due to excellent fuel cell operation under relatively high-humidity conditions despite degradation in performance in the electrolysis mode.  相似文献   

4.
This work is to study the effect of properties of gas diffusion layer (GDL) on performance in a polymer electrolyte membrane fuel cell (PEMFC) by both numerical simulation and experiments. The 1-dimension numerical simulation using the mixture-phase model is developed to calculate polarization curve. We are able to estimate optimum GDL properties for cell performance from numerical simulation results. Various GDLs which have different properties are prepared to verify accuracy of the simulation results. The contact angle and gas permeability of GDLs are controlled by polytetrafluoroethylene (PTFE) content in micro-porous layers (MPLs). MPL slurry is prepared by homogeneous blending of carbon powder, PTFE suspension, isopropyl alcohol and glycerol. Then the slurry is coated on gas diffusion mediums (GDMs) surface with controlled thickness by blade coating method. Non-woven carbon papers which have different thicknesses of 200 μm and 380 μm are used as GDMs. The prepared GDLs are measured by surface morphology, contact angle, gas permeability and through-plane electrical resistance. Moreover, the GDLs are tested in a 25 cm2 single cell at 70 °C in humidified H2/air condition. The contact angle of GDL increases with increasing PTFE content in MPL. However, the gas permeability and through-plane electrical conductivity decrease with increasing PTFE content and thickness of GDM. These changes in properties of GDL greatly influence the cell performance. As a result, the best performance is obtained by GDL consists of 200 μm thick non-woven carbon paper as GDM and MPL contained 20 wt.% PTFE content.  相似文献   

5.
A series of carbon fiber felt/PTFE based gas diffusion layers (GDL) for Mg-air fuel cells were prepared by a simple method of immersing carbon fiber felt in PTFE suspension. Critical properties of the as-prepared GDL, including the surface morphology, electronic resistivity, porosity and gas permeability, have been characterized to investigate the effect of PTFE suspension concentration and PTFE content on the properties of the GDL. The micrographs indicated that the PTFE was homogenously dispersed on the carbon fiber felts and showed structure with a microporous layer. The as-prepared GDL exhibited good mechanical property, high electronic conductivity, sufficient water repellency and high gas permeability. Compared with the Mg-air fuel cell with a traditional carbon powder based cathode, the performance and the stability of Mg-air fuel cell with the carbon fiber felt based GDL are improved significantly.  相似文献   

6.
Gas diffusion layer (GDL) plays a key role in proton exchange membrane fuel cells, which provides multi-functions for gas transport, thermal-electrical conduction and mechanical support. Coupling manipulation of different microstructural characteristics could potentially improve transport properties of GDLs. This work proposes an approach to reconstruct heterogenous GDLs and conduct pore-scale modeling to evaluate the anisotropic transport properties. The models are reconstructed using X-ray computed tomography, stochastically reconstruction methods and morphological processing techniques, which consider different fiber diameter, GDL thickness and local porosity distribution type. Combined effects of microstructure characteristics on tortuosity, diffusivity, thermal-electrical conductivity and anisotropic ratios are investigated comprehensively. The results show that the diffusivity with fiber diameter of 7 μm is approximately 7% lower, and the conductivity is 8% higher than that of 9 μm. The anisotropic ratios of diffusivity, thermal conductivity and electrical conductivity range from 1.25 to 1.65, 5 to 20, and 20 to 55, respectively. Local porosity distribution of uniform-fluctuated type, fiber diameter of 7 μm and GDL thickness of 126 μm are suggested to balance diffusivity and thermal-electrical conductivity simultaneously. The methods and results can guide microstructure design of other porous electrodes with higher performance.  相似文献   

7.
Planar solid oxide fuel cell (SOFC) systems often employ metallic interconnects, which separate and connect individual cells in electrical series to create a stack. Coated and uncoated ferritic stainless steels (FSSs), are reported among the most promising materials currently being investigated for the interconnect application. In this study, FSS AISI 441 samples coated with electroless nickel (∼15 μm) were subjected to both single (moist air) and dual atmosphere (moist air/moist hydrogen) exposures at 800 °C for 100 h to simulate short-term SOFC interconnect operation. Single-atmosphere exposures induced a uniform and dense surface oxide layer of approximately 5 μm total thickness, comprised of a dense and uniform Ni-rich oxide layer above a mixed layer of Fe, Cr and Mn-rich oxides. In contrast, the air-side of dual atmosphere exposed samples consisted of a mixed, porous and delaminated surface layer comprised of Fe, Cr, Mn and Ni metals and oxides, with over 30 μm in total thickness. Comparative analyses of the single and dual atmosphere exposures and resultant surface oxide layers, along with suspected mechanisms and implications are presented and discussed.  相似文献   

8.
A tradeoff between the low humidity and the high performance remains a key challenge for the proton exchange membrane fuel cell (PEMFC). In this work, a novel self-humidifying gas diffusion layer (GDL) with a single-walled carbon nanotube (SWCNT) nonwoven layer between the gas diffusion substrate and the hydrophobic microporous layer is controllably prepared to elevate the cell performance under dry conditions. The membrane electrode assembly (MEA) with 0.25 mg cm−2 SWCNT loading exhibits a current density of 0.69 A cm−2 at 0.6 V, which is 392.8% higher than that of the counterpart without the SWCNT interlayer at the same relative humidity. Moreover, the SWCNT interlayer with rational pore structure and proper wettability dramatically improves the water retention capacity of MEA, thus enhancing the low-humidity performance of MEA. The structure design of GDL provides an effective strategy for self-humidifying PEMFC control optimization.  相似文献   

9.
A new method of preparing microporous layer (MPL) for proton exchange membrane fuel cell (PEMFC) was presented in this paper. Considering the bad dispersion of PTFE aqueous suspension in the carbon slurry based on ethanol, polyvinylpyrrolidone (PVP) aqueous solution was used to prepare carbon slurry for microporous layer. The prepared gas diffusion layers (GDLs) were characterized by scanning electron microscopy, contact angle system and pore size distribution analyzer. It was found that the GDL prepared with PVP aqueous solution had higher gas permeability, as well as more homogeneous hydrophobicity. Moreover, the prepared GDLs were used in the cathode of fuel cell and evaluated with fuel cell performance and EIS analysis, and the GDL prepared with PVP aqueous solution indicated better fuel cell performance and lower ohmic resistance and mass transfer resistance.  相似文献   

10.
This study focused on novel cathode structures to increase power generation and organic substrate removal in microbial fuel cells (MFCs). Three types of cathode structures, including two-layer (gas diffusion layer (GDL) and catalyst layer (CL)), three-layer (GDL, micro porous layer (MPL) and CL), and multi-layer (GDL, CL, carbon based layer (CBL) and hydrophobic layers) structures were examined and compared in single-chamber MFCs (SCMFCs). The results showed that the three-layer (3L) cathode structures had lower water loss than other cathodes and had a high power density (501 mW/m2). The MPL in the 3L cathode structure prevented biofilm penetration into the cathode structure, which facilitated the oxygen reduction reaction (ORR) at the cathode. The SCMFCs with the 3L cathodes had a low ohmic resistance (Rohmic: 26-34 Ω) and a high cathode open circuit potential (OCP: 191 mV). The organic substrate removal efficiency (71-78%) in the SCMFCs with 3L cathodes was higher than the SCMFCs with two-layer and multi-layer cathodes (49-68%). This study demonstrated that inserting the MPL between CL and GDL substantially enhanced the overall electrical conduction, power generation and organic substrate removal in MFCs by reducing water loss and preventing biofilm infiltration into the cathode structure.  相似文献   

11.
In a proton exchange membrane fuel cell (PEMFC), effective GDL surface water elimination is significant to water management. This paper used the volume-of-fluid method (VOF) method to carry out simulation research on transferring liquid water in the flow channel with a hydrophilic pipe. The findings indicated that compared with a straight channel, a hydrophilic pipe structure could effectively remove water from the gas diffusion surface (GDL) and reduce the surface water coverage of the GDL. With the increase in the diameter and height of the pipe structure, the GDL surface's water coverage first increased and then decreased, and it was less with the pipe structure than with the direct flow channel. The removal rate of water on the GDL surface was accelerated. The spacing of hydrophilic pipes has a significant impact on the transportation of water. As the spacing increases, the removal rate of water on the GDL surface slowed. A hydrophilic pipe structure with a diameter of 75 μm, a height of 400 μm, and spacing of 300 μm has good water removal performance on the GDL surface. This research work proposes a new internal structure design of the flow channel, which has specific implications for removing water on the GDL surface.  相似文献   

12.
The present work focusses on measuring the permeability across gas diffusion layers (GDLs) first in a dedicated cell and later in PEM fuel cell configuration with varying bi-polar plate designs. Eight carbon paper-based GDLs with and without the microporous layer (MPL), have been tested. An in-house designed dedicated cell allowed measuring pressure drop depending on flow rate, for i) through-plane and ii) in-plane direction. Further, transport measurements were conducted in 25 cm2 bi-polar plates (BPs) in fuel cell configuration having single or multiple serpentine channels, by stacking the GDL inside. The results show that gas permeability in the dedicated cell for through-plane and in-plane can be estimated by using Darcy's law. However, for BPs, the flow is affected additionally by inertial contribution (Darcy-Forchheimer). Finally, the efficiency allowed by selected GDLs installed in a fuel cell under operation shows a relationship between the equivalent permeability and the fuel cell performance.  相似文献   

13.
The effective removal of water on the gas diffusion layer (GDL) surface and low flow channel resistance are essential for the water management of proton exchange membrane fuel cells (PEMFCs). In this paper, a 3D two-phase volume of fluid (VOF) model is used to compare and analyze the influence of different GDL surface microstructures on the liquid hydrodynamic behavior and optimize the design of the sine wave microstructure. The results show that the surface microstructure of the GDL has a more significant impact on the water removal and flow resistance coefficient in the flow channel, and the sine wave microstructure has substantial advantages. The sine wave peak and period significantly influence the water removal and flow resistance coefficient. As the peak increases, the average relative change rate and the flow resistance coefficient also increase; the influence of the period is opposite to the peak, and the continuous decrease of the period will accelerate the water removal in the flow channel. The sine wave's height and width have little impact on water removal and the flow resistance coefficient. When the sine wave A = 75 μm, T = 1.5, H = 15 μm, and L = 25 μm, good flow channel water removal and low resistance are achieved. This work has particular guiding significance for removing liquid water on the GDL surface and obtaining low flow channel resistance.  相似文献   

14.
The microporous layer (MPL) as a part of diffusion medium has an important impact on mass transfer of proton exchange membrane fuel cell (PEMFC). In this study, MPLs of gas diffusion layers (GDLs) are prepared with different carbon blacks, and the properties of carbon blacks and their effects as MPLs on cell performance are systematically investigated. The results show that the GDL prepared by Acetylene Black (ACET) exhibits the best performance with a maximum power density up to 2.05 W cm−2. Moreover, it still maintains extremely high performance with increasing current density even at humidity condition of 100% relative humidity, which means its excellent water/gas transportation capacity. This study contributes to deeply understanding the correlations between the properties of MPL material itself and their corresponding performance exhibited in cell. It also provides an important reference for enhancing cell performance and further advancing the practical applications of MPLs in PEMFC field.  相似文献   

15.
The pore structure and pore volume of catalyst layer (CL) were controlled by utilizing multi-walled carbon nanotube (MWCNT). According to the increase in MWCNT ratio in CL, the primary pore (below 100 nm) volume concerning with the phosphoric acid penetration to the reaction site was decreased and the secondary pore (approximately 1 μm) volume relating with oxygen gas transportation was increased, respectively. However, the excessive addition of MWCNT was detrimental to electrochemical properties due to the difficulty of phosphoric acid penetration to the reaction site and the opposite influx of phosphoric acid to the secondary pore. Furthermore, the adhesion strength between CL and gas diffusion layer (GDL) was improved by only 10% addition of MWCNT. Therefore, it is suggested that the ratio of MWCNT in CL can be key role for obtaining the optimized pore volume, enhanced adhesion strength, and good performance of polymer electrolyte membrane fuel cell (PEMFC).  相似文献   

16.
Understanding the thermal properties of the microporous layer (MPL) is critical for accurate thermal analysis and improving the performance of proton exchange membrane (PEM) fuel cells operating at high current densities. In this study, the effective through-plane thermal conductivity and contact resistance of the MPL have been investigated. Gas diffusion layer (GDL) samples, coated with 5%-wt. PTFE, with and without an MPL are measured using the guarded steady-state heat flow technique described in the ASTM standard E 1225-04. Thermal contact resistance of the MPL with the iron clamping surface was found to be negligible, owing to the high surface contact area. Effective thermal conductivity and thickness of the MPL remained constant for compression pressures up to 15 bar at 0.30 W/m°K and 55 μm, respectively. The effective thermal conductivity of the GDL substrate containing 5%-wt. PTFE varied from 0.30 to 0.56 W/m°K as compression was increased from 4 to 15 bar. As a result, GDL containing MPL had a lower effective thermal conductivity at high compression than the GDL without MPL. At low compression, differences were negligible. The constant thickness of the MPL suggests that the porosity, as well as heat and mass transport properties, remain independent of the inhomogeneous compression by the bipolar plate. Despite the low effective thermal conductivity of the MPL, thermal performance of the GDL can be improved by exploiting the excellent surface contact resistance of the MPL.  相似文献   

17.
A PEMFC (polymer electrolyte membrane fuel cell or proton exchange membrane fuel cell) stack is composed of GDLs (gas diffusion layers), MEAs (membrane electrode assemblies), and bipolar plates. One of the important functions of bipolar plates is to collect and conduct the current from cell to cell, which requires low electrical bulk and interfacial resistances. For a carbon fiber epoxy composite bipolar plate, the interfacial resistance is usually much larger than the bulk resistance due to the resin-rich layer on the composite surface.In this study, a thin graphite layer is coated on the carbon/epoxy composite bipolar plate to decrease the interfacial contact resistance between the bipolar plate and the GDL. The total electrical resistance in the through-thickness direction of the bipolar plate is measured with respect to the thickness of the graphite coating layer, and the ratio of the bulk resistance to the interfacial contact resistance is estimated using the measured data. From the experiment, it is found that the graphite coating on the carbon/epoxy composite bipolar plate has 10% and 4% of the total electrical and interfacial contact resistances of the conventional carbon/epoxy composite bipolar plate, respectively, when the graphite coating thickness is 50 μm.  相似文献   

18.
The visualization of the thawing and desaturation process on an initially saturated, frozen gas diffusion layer (GDL) with a serpentine gas flow channel was performed based on synchrotron X-ray computed tomography images. High speed CT scanning during the experiments allowed the dynamic desaturation process to be quantified under the cold-start with air purging condition. The saturation profiles and the desaturation rates were studied over the entire GDL domain, through-plane, and in selected regions of interest for localized behavior. Sigracet 35AA and 35BA GDLs were selected for the experiments to study the effects of GDL hydrophobicity. Along with the real-time saturation profiles, the average desaturation rates for the entire GDL domain over the whole purging process were 0.000186 μL cm?2 s?1, 0.000470 μL cm?2 s?1, 0.000516 μL cm?2 s?1 and 0.000901 μL cm?2 s?1 with the superficial gas velocity of the purging air at 2.88 m/s, 4.26 m/s, 5.98 m/s and 9.02 m/s, respectively. In addition, the dynamic saturation contours and 3-D GDL geometry models were constructed to show the liquid water movement through a GDL. Although the GDL desaturation curves for each experiment share similar trends, the results show that different conditions including air flow rate, GDL geometric location, initial water saturation, and GDL boundary condition could cause heterogeneous desaturation behavior on both overall and localized GDL regions. These data provide valuable information for future modeling studies that involve the thawing process in the GDL, and could be used to optimize the cell design and develop cold-start protocols.  相似文献   

19.
《Journal of power sources》2006,161(1):275-281
The hydrophobic properties of carbon fibers improved by a CF4 plasma treatment were used to fabricate gas diffusion layers (GDLs) for use in proton exchange membrane fuel cells. The water contact angle of the CF4 plasma treated GDL was measured as 132.8 ± 0.2° at 45 °C and very few surface gas diffusion pores were either sealed or blocked by the excessive hydrophobic material residuals. Polarization measurements verified that the CF4 plasma treated modules can indeed enhance fuel cell performance, compared to the membrane electrode assemblies (MEAs) with a non-wet-proofed GDL, 10 wt% PTFE dip-coated GDL, and commercially available GDL (10 wt% PTFE).  相似文献   

20.
According to the H2 and fuel cell road map in Japan, the target operating temperature of polymer electrolyte fuel cell (PEFC) should be 90 °C from 2020 to 2025. In this study, the impact of polymer electrolyte membrane (PEM) and gas diffusion layer (GDL)'s thickness on heat and mass transfer characteristics as well as power generation performance of PEFC is investigated at operating temperature of 90 °C. The in-plane temperature distributions on anode and cathode separator are also measured using thermograph. As a result, it is observed that the increase in power from 1 W to 5 W at the current density of 0.80 A/cm2 as well as even temperature distribution within 1 °C can be obtained at operating temperature of 90 °C by decrease in GDL's thickness from 190 μm to 110 μm. In addition, the power is increased from 3 W to 4 W at the current density of 0.80 A/cm2 operated at 90 °C by decrease in the PEM's thickness from 127 μm to 25 μm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号