首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
In this study, analyses of the thermodynamic performance and life cycle cost of a geothermal energy-assisted hydrogen liquefaction system were performed in a computer environment. Geothermal water at a temperature of 200 °C and a flow rate of 100 kg/s was used to produce electricity. The produced electricity was used as a work input to liquefy the hydrogen in the advanced liquefaction cycle. The net work requirement for the liquefaction cycle was calculated as 8.6 kWh/kg LH2. The geothermal power plant was considered as the work input in the liquefaction cycle. The hydrogen could be liquefied at a mass flow rate of 0.2334 kg/s as the produced electricity was used directly to produce liquid hydrogen in the liquefaction cycle. The unit costs of electricity and liquefied hydrogen were calculated as 0.012 $/kWh and 1.44 $/kg LH2. As a result of the life cycle cost analysis of the system, the net present value (NPV) and levelized annual cost (LAC) were calculated as 123,100,000 and 14,450,000 $/yr. The simple payback period (Nspp) and discount payback period (Ndpp) of the system were calculated as 2.9 and 3.6 years, respectively.  相似文献   

2.
In this study, biogas power production and green hydrogen potential as an energy carrier are evaluated from biomass. Integrating an Organic Rankine Cycle (ORC) to benefit from the waste exhaust gases is considered. The power obtained from the ORC is used to produce hydrogen by water electrolysis, eliminate the H2S generated during the biogas production process and store the excess electricity. Thermodynamic and thermoeconomic analyses and optimization of the designed Combined Heat and Power (CHP) system for this purpose have been performed. The proposed study contains originality about the sustainability and efficiency of renewable energy resources. System design and analysis are performed with Engineering Equation Solver (EES) and Aspen Plus software. According to the results of thermodynamic analysis, the energy and exergy efficiency of the existing power plant is 28.69% and 25.15%. The new integrated system's energy, exergy efficiencies, and power capacity are calculated as 41.55%, 36.42%, and 5792 kW. The total hydrogen production from the system is 0.12412 kg/s. According to the results of the thermoeconomic analysis, the unit cost of the electricity produced in the existing power plant is 0.04323 $/kWh. The cost of electricity and hydrogen produced in the new proposed system is determined as 0.03922 $/kWh and 0.181 $/kg H2, respectively.  相似文献   

3.
In this study, the thermodynamic and economic analysis of a geothermal energy assisted hydrogen production system was performed using real-time Artificial Neural Networks on Field Programmable Gate Array. During the modeling of the system in the computer environment, a liquid geothermal resource with a temperature of 200 °C and a flow rate of 100 kg/s was used for electricity generation, and this electricity was used as a work input in the electrolysis unit to split off water into the hydrogen and oxygen. In the designed system, the net work produced from the geothermal power cycle, the overall exergy efficiency of the system, the unit cost of the produced hydrogen and the simple payback period of the system were calculated as 7978 kW, 38.37%, 1.088 $/kg H2 and 4.074 years, respectively. In the second stage of the study, Feed-Forward Artificial Neural Networks model with a single hidden layer was used for modeling the system. The activation functions of the hidden layer and output layer were Tangent Sigmoid and Linear functions, respectively. The system was implemented on Field Programmable Gate Array using the Matlab-based model of the system as a reference. The maximum operating frequency and chip statistics of the designed unit of Field Programmable Gate Array based geothermal energy assisted hydrogen production system were presented. The result can be used to gain better knowledge and optimize hydrogen production systems.  相似文献   

4.
The increasing threat to environmental sustainability as a result of greenhouse gas (GHG) emissions from fossil fuel base power plants has necessitated the need to find sustainable energy sources to meet the world's energy demands. This study focuses on assessing the potential of a hybrid power plant for the production of electricity, hydrogen for the production of fertilizer for agricultural activities, farmland irrigation, environmental impact as well as its employment potential in northern Ghana. The Shannon entropy weight and TOPSIS multi-criteria decision-making approach were adopted to rank and identify the optimal configuration out of five possible options for the study area. Results from the simulation show that the winning system, i.e., Hydro + Battery system would generate a total electricity of 1,095,679 kWh/year. A cost of electricity of 0.06 $/kWh with an operating cost (OC) of $18,318 was recorded for the winning system. The total produced hydrogen by the optimum configuration is 8816 kg/year at a levelized cost of hydrogen (LCOH) of 4.47 $/kg. The quantity of low-carbon fertilizer that can be produced from the produced hydrogen is also assessed. The optimum configuration also recorded an employment potential of 4 persons in 25 years. A total GHG equivalence of 383.49 metric tons of CO2 equivalent indicating the level of emissions that will be avoided should the optimum system be used to meet the demands specified in this study was obtained.  相似文献   

5.
Renewable energy based multi-generation systems can help solving energy-related environmental problems. For this purpose, a novel solar tower-based multi-generation system is proposed for the green hydrogen production as the main product. A solar-driven open Brayton cycle with intercooling, regeneration and reheat is coupled with a regenerative Rankine cycle and a Kalina cycle-11 as a unique series of power cycles. Significant portion of the produced electricity is utilized to produce green hydrogen in an electrolyzer. A thermal energy storage, a single-effect absorption refrigeration cycle and two domestic hot water heaters are also integrated. Energy, exergy and economic analyses are performed to examine the performance of the proposed system, and a detailed parametric analysis is conducted. Multiobjective optimization is carried out to determine the optimum performance. Optimum energy and exergy efficiencies, unit exergy product cost and total cost rate are calculated as 39.81%, 34.44%, 0.0798 $/kWh and 182.16 $/h, respectively. Products are 22.48 kg/h hydrogen, 1478 kW power, 225.5 kW cooling and 7.63 kg/s domestic hot water. Electrolyzer power size is found as one of the most critical decision variables. Solar subsystem has the largest exergy destruction. Regenerative Rankine cycle operates at the highest energy and exergy efficiencies among power cycles.  相似文献   

6.
Seven models are considered for the production and liquefaction of hydrogen by geothermal energy. In these models, we use electrolysis and high-temperature steam electrolysis processes for hydrogen production, a binary power plant for geothermal power production, and a pre-cooled Linde–Hampson cycle for hydrogen liquefaction. Also, an absorption cooling system is used for the pre-cooling of hydrogen before the liquefaction process. A methodology is developed for the economic analysis of the models. It is estimated that the cost of hydrogen production and liquefaction ranges between 0.979 $/kg H2 and 2.615 $/kg H2 depending on the model. The effect of geothermal water temperature on the cost of hydrogen production and liquefaction is investigated. The results show that the cost of hydrogen production and liquefaction decreases as the geothermal water temperature increases. Also, capital costs for the models involving hydrogen liquefaction are greater than those for the models involving hydrogen production only.  相似文献   

7.
A techno-economic assessment is conducted for a multigeneration system comprised of two renewable energy subsystems—geothermal and solar—to supply electrical power, cooling, heating, hydrogen and hot water for buildings. The proposed system is evaluated in terms of energy and exergy efficiencies. The simulation results show that the electrolyzer produces 2.7 kg/h hydrogen. A parametric study is carried out to assess the effect of various parameters on the system energy and exergy efficiencies. The economic assessment, performed using the Hybrid Optimization of Multiple Energy Resources (HOMER) software, shows that the net present cost of the optimized electrical power system is $476,000 and the levelized cost of electricity is $0.089/kWh.  相似文献   

8.
Environmental degradation and global warming are presently two of the most pressing global concerns. According to the (IAE), around 80% of global energy demand has been met by fossil fuels in recent years, resulting in an increase in CO2 emissions as the primary greenhouse gas. Switching to renewable energy sources and using more energy-efficient energy systems are vital for mitigating environmental challenges and reducing our reliance on fossil fuels, among other things. Hydrogen fuels are primary renewable resources because of their reduced cost and ability to produce net-zero CO2 emissions. In the present study, a system is designed to generate power and liquid hydrogen from geothermal sources. The generated power by employing either the organic Rankin cycle (ORC) or absorption power cycle (APC) is compared to seek the best cycle performance from power generation standpoint. A comprehensive thermodynamic and economic modeling is carried out for the proposed system. In addition, a parametric study is applied to see which parameters affect the performance of the system. Multi-objective optimization is carried out to find the best operating point of the hydrogen liquefaction energy system. The system demonstrates better performance when APC is applied for power generation. The cost of generated liquid hydrogen by ORC and APC is 3.8 $/kg.LH2 and 3.6 $/kg.LH2, respectively. Furthermore, 0.014 $/kWh of electricity cost is reached by ORC compared to 0.012 $/kWh of APC. Parametric analysis shows that the higher the temperature and flow rate of the brine of geothermal fluid, the higher the efficiency and the lower cost. Finally, the multi-objective optimization pinpoints that the system's efficiency and unit product cost at the optimal ORC-based design is 33.85% and 0.0121 $/kWh. In comparison, the APC demonstrates better performance by 34.5% and 0.011 $/kWh.  相似文献   

9.
In this study, an integrated system is proposed for mainly electricity and hydrogen production. Energy and exergy analyses of the system are also examined by using Engineering Equation Solver (EES, version 2019) under solar radiation during day time on 1st July. The proposed system consists of a middle-temperature geothermal source with fluid temperature 93 °C, three solar collectors (SCs of 300 m2) namely parabolic trough solar collectors (PTSCs), evacuated tube solar collectors (ETSCs), flat plate solar collectors (FPSCs), an organic Rankine cycle (ORC), proton exchange membrane (PEM), a compressor, hot water storage tank and a mushroom cultivation room. The temperature of the geothermal fluid is upgraded via solar collectors by harvesting solar radiation to operate the ORC. Thus the generated electricity is used in the PEM electrolysis system for producing hydrogen. When the PTSCs, ETSCs, and FPSCs are integrated with the geothermal source separately, it is found that 2758.69 g, 1585.27 g, and 634.42 g of hydrogen can be produced, respectively for a day. The highest overall energetic and exergetic performance of the system is calculated as to be 5.67% and 7.49%, respectively.  相似文献   

10.
In this study, a new solar-based fuel cell-powered oxygenation and ventilation system is presented for COVID-19 patients. Solar energy is utilized to operate the developed system through photovoltaic panels. The method of water splitting is utilized to generate the required oxygen through the operation of a proton exchange membrane water electrolyser. Moreover, the hydrogen produced during water splitting is utilized as fuel to operate the fuel cell system during low solar availability or the absence of solar irradiation. Transient simulations and thermodynamic analyses of the developed system are performed by accounting for the changes in solar radiation intensities during the year. The daily oxygen generation is found to vary between 170.4 kg/day and 614.2 kg/day during the year. Furthermore, the amount of daily hydrogen production varies between 21.3 kg/day and 76.8 kg/day. The peak oxygen generation rate attains a value of 18.6 g/s. Moreover, the water electrolysis subsystem entails daily exergy destruction in the range of 139.9–529.7 kWh. The maximum efficiencies of the developed system are found to be 14.3% energetically and 13.4% exergetically.  相似文献   

11.
A hybrid proton exchange membrane fuel cell (PEMFC) multi-generation system model integrated with solar-assisted methane cracking is established. The whole system mainly consists of a disc type solar Collector, PEMFC, Organic Rankine cycle (ORC). Methane cracking by solar energy to generate hydrogen, which provides both power and heat. The waste heat and hydrogen generated during the reaction are efficiently utilized to generate electricity power through ORC and PEMFC. The mapping relationships between thermodynamic parameters (collector temperature and separation ratio) and economic factors (methane and carbon price) on the hybrid system performance are investigated. The greenhouse gas (GHG) emission reductions and levelized cost of energy (LCOE) are applied to environmental and economic performance evaluation. The results indicate that the exergy utilization factor (EXUF) and energy efficiency of the novel system can reach 21.9% and 34.6%, respectively. The solar-chemical energy conversion efficiency reaches 40.3%. The LCOE is 0.0733 $/kWh when the carbon price is 0.725 $/kg. After operation period, the GHG emission reduction and recovered carbon can reach 4 × 107 g and 14,556 kg, respectively. This novel hybrid system provides a new pathway for the efficient utilization of solar and methane resources and promotes the popularization of PEMFC in zero energy building.  相似文献   

12.
In this study, the performance of the combined cooling cycle with the Organic Rankine power cycle, which provides cooling of the hydrogen at the compressor inlet which compresses the constant temperature in the Claude cycle used for hydrogen liquefaction, on the system is examined. The Organic Rankine combined cooling cycle was considered to be using a geothermal source with a flow rate of 120 kg/s at a temperature of 200 °C. The first and second law performance evaluations of the whole system were made depending on the heat energy at different levels taken from the geothermal source. The thermodynamic analysis of the equipment making up the system has been done in detail. The temperature values at which the hydrogen can be effectively cooled were determined in the presented combined system. The efficiency coefficient of the total system was calculated based on varying pre-cooling values. As a result of the study, it was determined that cold entry of hydrogen into the Claude cycle reduced the energy consumption required for liquefaction. Amount of hydrogen cooled to specified temperature increase by increase in mass flow of geothermal water and its temperature. Liquefaction cost is calculated to be 0.995 $/kg H2 and electricity produced by itself is calculated to be 0.025 $/kWh by the new model of liquefaction system. Cost of the liquefaction in the proposed system is about 39.7% lower than direct value of hydrogen liquefaction of 1.650 $/kg given in the literature.  相似文献   

13.
Most inhabitants of rural communities in Africa lack access to clean and reliable electricity. This has deprived the rural dwellers access to modern healthcare delivery. In this paper, an off-grid renewable energy system consisting of solar PV and wind turbine with hydrogen storage scheme has been explored to meet the electrical energy demands of a health clinic. The health clinic proposed is a group II with 10 beds located in a typical village in South Africa. First, the wind and solar energy resources of the village were analysed. Thereafter, the microgrid architecture that would meet the energy demand of the clinic (18.67 kWh/day) was determined. Some of the key results reveal that the average annual wind speed at 60 m anemometer height and solar irradiation of the village are 7.9 m/s and 4.779 kWh/m2/day, respectively. The required architecture for the clinic composes of 40 kW solar PV system, 3 numbers of 10 kW wind turbines, 8.6 kW fuel cell, 25 kW electrolyser and 40 kg hydrogen tank capacity. The capital cost of the microgrid was found to be $177,600 with a net present cost of $206,323. The levelised cost of energy of the system was determined to be 2.34 $/kWh. The project has a breakeven grid extension distance of 8.81 km. Since this distance is less than the nearest grid extension distance of 21.35 km, it is established that the proposed renewable energy microgrid with a hydrogen storage system is a viable option for the rural community health clinic.  相似文献   

14.
Hydrogen is produced via steam methane reforming (SMR) for bitumen upgrading which results in significant greenhouse gas (GHG) emissions. Wind energy based hydrogen can reduce the GHG footprint of the bitumen upgrading industry. This paper is aimed at developing a detailed data-intensive techno-economic model for assessment of hydrogen production from wind energy via the electrolysis of water. The proposed wind/hydrogen plant is based on an expansion of an existing wind farm with unit wind turbine size of 1.8 MW and with a dual functionality of hydrogen production and electricity generation. An electrolyser size of 240 kW (50 Nm3 H2/h) and 360 kW (90 Nm3 H2/h) proved to be the optimal sizes for constant and variable flow rate electrolysers, respectively. The electrolyser sizes aforementioned yielded a minimum hydrogen production price at base case conditions of $10.15/kg H2 and $7.55/kg H2. The inclusion of a Feed-in-Tariff (FIT) of $0.13/kWh renders the production price of hydrogen equal to SMR i.e. $0.96/kg H2, with an internal rate of return (IRR) of 24%. The minimum hydrogen delivery cost was $4.96/kg H2 at base case conditions. The life cycle CO2 emissions is 6.35 kg CO2/kg H2 including hydrogen delivery to the upgrader via compressed gas trucks.  相似文献   

15.
In this paper, a conceptual hybrid biomass gasification system is developed to produce hydrogen and is exergoeconomically analyzed. The system is based on steam biomass gasification with the lumped solid oxide fuel cell (SOFC) and solid oxide electrolyser cell (SOEC) subsystem as the core components. The gasifier gasifies sawdust in a steam medium and operates at a temperature range of 1023-1423 K and near atmospheric pressure. The analysis is conducted for a specific steam biomass ratio of 0.8 kmol-steam/kmol-biomass. The gasification process is assumed to be self-thermally standing. The pressurized SOFC and SOEC are of planar types and operate at 1000 K and 1.2 bar. The system can produce multi-outputs, such as hydrogen (with a production capacity range of 21.8-25.2 kgh−1), power and heat. The internal hydrogen consumption in the lumped SOFC-SOEC subsystem increases from 8.1 to 8.6 kg/h. The SOFC performs an efficiency of 50.3% and utilizes the hydrogen produced from the steam that decomposes in the SOEC. The exergoeconomic analysis is performed to investigate and describe the exergetic and economic interactions between the system components through calculations of the unit exergy cost of the process streams. It obtains a set of cost balance equations belonging to an exergy flow with material streams to and from the components which constitute the system. Solving the developed cost balance equations provides the cost values of the exergy streams. For the gasification temperature range and the electricity cost of 0.1046 $/kWh considered, the unit exergy cost of hydrogen ranges from 0.258 to 0.211 $/kWh.  相似文献   

16.
Solar photovoltaic (SPV) power plants have long working life with zero fuel cost and negligible maintenance cost but requires huge initial investment. The generation cost of the solar electricity is mainly the cost of financing the initial investment. Therefore, the generation cost of solar electricity in different years depends on the method of returning the loan. Currently levelized cost based on equated payment loan is being used. The static levelized generation cost of solar electricity is compared with the current value of variable generation cost of grid electricity. This improper cost comparison is inhibiting the growth of SPV electricity by creating wrong perception that solar electricity is very expensive. In this paper a new method of loan repayment has been developed resulting in generation cost of SPV electricity that increases with time like that of grid electricity. A generalized capital recovery factor has been developed for graduated payment loan in which capital and interest payment in each installment are calculated by treating each loan installment as an independent loan for the relevant years. Generalized results have been calculated which can be used to determine the cost of SPV electricity for a given system at different places. Results show that for SPV system with specific initial investment of 5.00 $/kWh/year, loan period of 30 years and loan interest rate of 4% the levelized generation cost of SPV electricity with equated payment loan turns out to be 28.92 ¢/kWh, while the corresponding generation cost with graduated payment loan with escalation in annual installment of 8% varies from 9.51 ¢/kWh in base year to 88.63 ¢/kWh in 30th year. So, in this case, the realistic current generation cost of SPV electricity is 9.51 ¢/kWh and not 28.92 ¢/kWh. Further, with graduated payment loan, extension in loan period results in sharp decline in cost of SPV electricity in base year. Hence, a policy change is required regarding the loan repayment method. It is proposed that to arrive at realistic cost of SPV electricity long-term graduated payment loans may be given for installing SPV power plants such that the escalation in annual loan installments be equal to the estimated inflation in the price of grid electricity with loan period close to working life of SPV system.  相似文献   

17.
In this study, electricity and hydrogen production of an integrated system with energy and exergy analyses are investigated. The system also produces clean water for the water electrolysis system. The proposed system comprises evacuated tube solar collectors (ETSCs), parabolic trough solar collectors (PTSCs), flash turbine, organic Rankine cycles (ORC), a reverse osmosis unit (RO), a water electrolysis unit (PEM), a greenhouse and a medium temperature level geothermal resource. The surface area of each collector is 500 m2. The thermodynamics analysis of the integrated system is carried out under daily solar radiation for a day in August. The fluid temperature of the medium temperature level geothermal resource is upgraded by ETSCs and PTSCs to operate the flash turbine and the ORCs. The temperature of the geothermal fluid is upgraded from 130 °C to 323.6 °C by the ETSCs and PTSCs. As a result, it is found that the integrated system generates 162 kg clean water, 1215.63 g hydrogen, and total electrical energy of 2111.04 MJ. The maximum energy and exergy efficiencies of the overall system are found as 10.43% and 9.35%, respectively.  相似文献   

18.
A typical problem in Northeast China is that a large amount of surplus electricity has arisen owing to the serious photovoltaic power curtailment phenomenon. To effectively utilize the excess photovoltaic power, a hybrid energy system is proposed that uses surplus electricity to produce hydrogen in this paper. It combines solar energy, hydrogen production system, and Combined Cooling Heating and Power (CCHP) system to realize cooling, heating, power, and hydrogen generation. The system supplies energy for three public buildings in Dalian City, Liaoning Province, China, and the system configuration with the lowest unit energy cost (0.0615$/kWh) was obtained via optimization. Two comparison strategies were used to evaluate the hybrid energy system in terms of unit energy cost, annual total cost, fossil energy consumption, and carbon dioxide emissions. Subsequently, the annual total energy supply, typical daily loads, and cost of the optimized system were analyzed. In conclusion, the system is feasible for small area public buildings, and provides a solution to solve the phenomenon of photovoltaic power curtailment.  相似文献   

19.
The rapidly growing of population in the developing countries and their lack of access to electricity, especially in the remote or rural areas, is causing huge challenges for on energy production. Energy is an enabler and a reliable energy supply is critical to sustainable socio-economic development for any nation. Most of Chad's people live in villages with no particular power supply system. Exploiting renewable energies is the only means of fostering development and improving people's welfare. This paper attempts at proposing an energy profile and storage model for Chad in vast remote towns. The paper addresses the key energy gap that is hindering on the development of such systems, it models and assess the potential on electricity generation and using hydrogen as surplus power storage system. A techno-econo-environmental survey on a solar-wind hybrid system in 25 towns in Chad is undertaken using NASA data and HOMER Software. Several hybrid scenarios of energy production and storage is analyzed. The results showed that in the electricity generation scenario, the average total NPC for the studied stations was $ 48164 and the average LCOE was $0.573. The lowest LCOE was related to Aouzou station with 0.507 $/kWh and the highest LCOE was obtained for Bol station with 0.604 $/kWh. In the simultaneous electricity and hydrogen generation scenario, the cheapest hydrogen ($4.695/kg) was produced in the “Grid” scenario, which was the same for all of the stations, with a total NPC of $2413770. The most expensive hydrogen ($4.707/kg) was generated in the “Grid-Wind” scenario and Bol stations with a total NPC of $2420186. The paper develops cost effective models for all hybrid systems combination for both electricity and hydrogen generation across Chad. These findings could help policy makers, investors and other developmental agencies make informed choices on energy access for sustainable development for rural communities in Sub Saharan Africa.  相似文献   

20.
This paper performs a thermo-economic assessment of a multi-generation system based on solar and wind renewable energy sources. This system works to generate power, freshwater, and hydrogen, which consists of the following parts: the solar collectors, Steam Rankine subsystem, Organic Rankine subsystem, desalination part, and hydrogen production and compression unit. Initially, the effects of variables including reference temperature, solar radiation intensity, wind speed, and solar cycle mass flow rate, which depend on weather conditions and affect the performance of the integrated system, were investigated. The thermodynamic analysis results showed that the overall study's exergy efficiency, the rate of hydrogen and freshwater production, and total cost rate are 33.3%, 7.92 kg/h, 1.6398 kg/s, and 61.28 $/h, respectively. Also, the net power generation rate in the Steam and Organic Rankine subsystems and wind turbines are 315 kW, 326.52 kW, and 226 kW, respectively. The main goal of this study is to minimize the total cost rate of the system and maximize the exergy efficiency and hydrogen and freshwater production rate of the total system. The results of optimization showed that the exergy efficiency value improved by 20.7%, the hydrogen production rate increased by 1%, and the total cost rate value declined by 2%. Moreover, the optimum point is similar to a region in Hormozgan province, Iran. So, this region is proposed for building the power plant.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号