首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Hydrogen has shown potential for improving the combustion and emission characteristics of the spark ignition (SI) dual-fuel engine. To reduce the additional NOx emissions caused by hydrogen direct injection, in this research, the cooperative control of the addition of hydrogen with exhaust gas recirculation (EGR) in the hydrogen/gasoline combined injection engine was investigated. The results indicate that both the addition of hydrogen and the use of EGR can increase the brake mean effective pressure (BMEP). As the αH2 value increases from 0% to 25%, the maximum BMEP increases by 9%, 12.70%, 16.50%, 11.30%, and 8.20%, respectively, compared with the value without EGR at λ = 1.2. The CA0-10 tends to increase with increases in the EGR rate. However, the effect of EGR in increasing the CA0-10 can be offset by the addition of 15% hydrogen at λ = 1.2. Measurements of the coefficient of variation of the indicated mean effective pressure (COVIMEP) indicate that the addition of hydrogen can effectively extend the EGR limit. Regarding gaseous emissions, NOx emissions, after the introduction of EGR and the addition of hydrogen, are lower than those of pure gasoline without EGR. An 18% EGR rate yields a significant reduction in NOx, reaching maximum decreases of about 82.7%, 77.8%, and 60% compared to values without EGR at λ = 1.0, 1.2, and 1.4, respectively. As the EGR rate increases, the hydrocarbon (HC) emissions continuously increase, whereas a blend of 5% hydrogen can significantly reduce the HC emissions at high EGR rates at λ = 1.4. Finally, according to combustion and emissions, the coupling of a 25% addition of hydrogen with 30% EGR at λ = 1.2, and the coupling of a 20% addition of hydrogen with an 18% EGR rate at λ = 1.4 yield the best results.  相似文献   

2.
Up to 90% hydrogen energy fraction was achieved in a hydrogen diesel dual-fuel direct injection (H2DDI) light-duty single-cylinder compression ignition engine. An automotive-size inline single-cylinder diesel engine was modified to install an additional hydrogen direct injector. The engine was operated at a constant speed of 2000 revolutions per minute and fixed combustion phasing of ?10 crank angle degrees before top dead centre (°CA bTDC) while evaluating the power output, efficiency, combustion and engine-out emissions. A parametric study was conducted at an intermediate load with 20–90% hydrogen energy fraction and 180-0 °CA bTDC injection timing. High indicated mean effective pressure (IMEP) of up to 943 kPa and 57.2% indicated efficiency was achieved at 90% hydrogen energy fraction, at the expense of NOx emissions. The hydrogen injection timing directly controls the mixture condition and combustion mode. Early hydrogen injection timings exhibited premixed combustion behaviour while late injection timings produced mixing-controlled combustion, with an intermediate point reached at 40 °CA bTDC hydrogen injection timing. At 90% hydrogen energy fraction, the earlier injection timing leads to higher IMEP/efficiency but the NOx increase is inevitable due to enhanced premixed combustion. To keep the NOx increase minimal and achieve the same combustion phasing of a diesel baseline, the 40 °CA bTDC hydrogen injection timing shows the best performance at which 85.9% CO2 reduction and 13.3% IMEP/efficiency increase are achieved.  相似文献   

3.
Premixed-charge compression-ignition (PCCI) combustion of dimethyl-ether (DME) with double injection strategy was investigated in a single-cylinder compression-ignition engine. DME main-injection was replaced by hydrogen to reduce carbon dioxide emissions. To study the effect of hydrogen, the injected amount of hydrogen was increased. Engine performance and emission of DME PCCI combustion were compared to those of hydrogen–DME PCCI combustion. In the DME PCCI engine operation, DME was injected directly into the cylinder at −120 crank angle degrees (°CA) after top dead center (aTDC) to simulate homogeneous charge at first, and then DME was injected secondly with varied second injection timing. In this case, DME injection timing in the second stage affected the engine performance and emissions. Delayed combustion phase showed a higher indicated mean effective pressure (IMEP), while it increased NOx emission when DME second injection is retarded. In the hydrogen–DME PCCI, hydrogen was injected at intake port with fixed injection timing. DME injection timing in hydrogen–DME PCCI combustion was also varied from −120 °CA to TDC, as in the DME PCCI engine operation. The total supplied heating value was fixed at 400 J for all cases. DME injection timing determined the start of combustion for the hydrogen–DME PCCI. With increasing the amount of hydrogen, exhaust emissions were reduced. Hydrogen–DME PCCI engine was operated with minimum amount of DME via the hydrogen addition and DME injection timing control. The optimized DME injection timing, −30 °CA aTDC, resulted in a lower exhaust emission-operation, while maintaining a higher IMEP.  相似文献   

4.
In the current work, Chemkin Pro's HCCI numerical model is used in order to explore the feasibility of using hydrogen in a dual fuel concept where hydrogen peroxide acts as ignition promoter. The analysis focuses on the engine performance characteristics, the combustion phasing and NOx emissions. It is shown that the use of hydrogen/hydrogen peroxide at extremely fuel lean conditions (φeff = 0.1 ? 0.4) results in significantly better performance characteristics (up to 60% increase of IMEP and 80% decrease of NOx) compared to the case of a preheated hydrogen/air mixture that aims to simulate the use of a glow plug. It is also shown that the addition of H2O2 up to 10% (per fuel volume) increases significantly the IMEP, power, torque, thermal efficiency (reaching values more than 60%) while also decreasing remarkably NOx emissions which will not require any exhaust after-treatment, for all engine speeds. The results presented herein are novel and promising, yet further research is required to demonstrate the feasibility of the proposed technology.  相似文献   

5.
Butanol could reduce emissions and alleviate the energy crisis as a bio-fuel used on engines, but the production cost problem limits the application of butanol. During the butanol production, ABE (Acetone-Butanol-Ethanol) is a critical intermediate product. Many studies researched the direct application of ABE on engines instead of butanol to solve the production cost problem of butanol. ABE has the defects of large ignition energy and vaporization heat. Hydrogen is a gaseous fuel with small ignition energy and high flame temperature. In this research, ABE port injection combines with hydrogen direct injection, forming a stratified state of the hydrogen-rich mixture around the spark plug. The engine speed is 1500 rpm, and λ is 1. Five αH2 (hydrogen blending fractions: 0, 5%, 10%, 15%, 20%) and five spark timings (5°, 10°, 15°, 20°, 25° CA BTDC) are studied to observe the effects of them on combustion and emissions of the test engine. The results show that hydrogen addition increases the maximum cylinder pressure and maximum heat release rate, increases the maximum cylinder temperature and IMEP, but the exhaust temperature decreases. The flame development period and flame propagation period shorten after adding hydrogen. Hydrogen addition improves HC and CO emissions but increases NOx emissions. Particle emissions decrease distinctly after hydrogen addition. Hydrogen changes the combustion properties of ABE and improves the test engine's power and emissions. The combustion in the cylinder becomes better with the increase of αH2, but a further increase in αH2 beyond 5% brings minor improvements on combustion.  相似文献   

6.
Recently, the increasing demand for energy requires the use of alternative fuels, especially in fossil fueled power systems. As a promising alternative fuel for next-generation diesel engines that utilize fossil fuel, hydrogen fuel is one step ahead due to its positive properties. In this study, the effects of hydrogen on the performance of a diesel engine have been numerically investigated with respect to different injection ratios and timings. The numerical results of the study for 25% load conditions on a single-cylinder, four-stroke diesel engine have been validated against experimental data taken from literature and good agreement has been observed for pressure results. Emission parameters such as NOx, CO and performance parameters such as cylinder temperature, pressure, power, thermal efficiency and IMEP are presented comparatively.The results of numerical analyses show that the maximum pressure, temperature and heat release rate are observed with injection ratio of H15 and early injection timing (20° CA BTDC). Besides that, engine power, thermal efficiency and IMEP are greatly improved with increasing injection ratio and early injection timing. Although combustion chamber performance parameters improve with rising the hydrogen injection ratio, higher NOx emissions have also been detected as a negative side effect. Furthermore, while early injection timing increases diesel engine performance, it also causes an increase in NOx emissions. Therefore, precise determination of injection timing together with the optimum amount of hydrogen has revealed that it brings crucial improvement in engine performance and emissions.  相似文献   

7.
Hydrogen has many excellent combustion properties that can be used for improving combustion and emissions performance of gasoline-fueled spark ignition (SI) engines. In this paper, an experimental study was carried out on a four-cylinder 1.6 L engine to explore the effect of hydrogen addition on enhancing the engine lean operating performance. The engine was modified to realize hydrogen port injection by installing four hydrogen injectors in the intake manifolds. The injection timings and durations of hydrogen and gasoline were governed by a self-developed electronic control unit (DECU) according to the commands from a calibration computer. The engine was run at 1400 rpm, a manifold absolute pressure (MAP) of 61.5 kPa and various excess air ratios. Two hydrogen volume fractions in the total intake of 3% and 6% were applied to check the effect of hydrogen addition fraction on engine combustion. The test results showed that brake thermal efficiency was improved and kept roughly constant in a wide range of excess air ratio after hydrogen addition, the maximum brake thermal efficiency was increased from 26.37% of the original engine to 31.56% of the engine with a 6% hydrogen blending level. However, brake mean effective pressure (Bmep) was decreased by hydrogen addition at stoichiometric conditions, but when the engine was further leaned out Bmep increased with the increase of hydrogen addition fraction. The flame development and propagation durations, cyclic variation, HC and CO2 emissions were reduced with hydrogen addition. When excess air ratio was approaching stoichiometric conditions, CO emission tended to increase with the addition of hydrogen. However, when the engine was gradually leaned out, CO emission from the hydrogen-enriched engine was lower than the original one. NOx emissions increased with the increase of hydrogen addition due to the raised cylinder temperature.  相似文献   

8.
Hydrogen and n-butanol are superior alternative fuels for SI engines, which show high potential in improving the combustion and emission characteristics of internal combustion engines. However, both still have disadvantages when applied individually. N-butanol fuel has poor evaporative atomization properties and high latent heat of vaporization. Burning n-butanol fuel alone can lead to incomplete combustion and lower temperature in the cylinder. Hydrogen is not easily stored and transported, and the engine is prone to backfire or detonation only using hydrogen. Therefore, this paper investigates the effects of hydrogen direct injection strategies on the combustion and emission characteristics of n-butanol/hydrogen dual-fuel engines based on n-butanol port injection/split hydrogen direct injection mode and the synergistic optimization of their characteristics. The energy of hydrogen is 20% of the total energy of the fuel in the cylinder. The experimental results show that a balance between dynamics and emission characteristics can be found using split hydrogen direct injection. Compared with the second hydrogen injection proportion (IP2) = 0, the split hydrogen direct injection can promote the formation of a stable flame kernel, shorten the flame development period and rapid combustion period, and reduce the cyclic variation. When the IP2 is 25%, 50% and 75%, the engine torque increases by 0.14%, 1.50% and 3.00% and the maximum in-cylinder pressure increases by 1.9%, 2.3% and 0.6% respectively. Compared with IP2 = 100%, HC emissions are reduced by 7.8%, 15.4% and 24.7% and NOx emissions are reduced by 16.4%, 13.8% and 7.9% respectively, when the IP2 is 25%, 50% and 75%. As second hydrogen injection timing (IT2) is advanced, CA0-10 and CA10-90 show a decreasing and then increasing trend. The maximum in-cylinder pressure rises and falls, and the engine torque gradually decreases. The CO emissions show a trend of decreasing and remaining constant. However, the trends of HC emissions and NOx emissions with IT2 are not consistent at different IP2. Considering the engine's dynamics and emission characteristics, the first hydrogen injection proportion (IP1) = 25% plus first hydrogen injection timing (IT1) = 240°CA BTDC combined with IP2 = 75% plus IT2 = 105°CA BTDC is the superior split hydrogen direct injection strategy.  相似文献   

9.
Regarding the limited fossil fuel reserves, the renewable ethanol has been considered as one of the substitutional fuels for spark ignition (SI) engines. But due to its high latent heat, ethanol is usually hard to be well evaporated to form the homogeneous fuel–air mixture at low temperatures, e.g., at idle condition. Compared with ethanol, hydrogen possesses many unique combustion and physicochemical properties that help improve combustion process. In this paper, the performance of a hydrogen-enriched SI ethanol engine under idle and stoichiometric conditions was investigated. The experiment was performed on a modified 1.6 L SI engine equipped with a hydrogen port-injection system. The ethanol was injected into the intake ports using the original engine gasoline injection system. A self-developed hybrid electronic control unit (HECU) was adopted to govern the opening and closing of hydrogen and ethanol injectors. The spark timing and idle bypass valve opening were governed by the engine original electronic control unit (OECU), so that the engine could operate under its original target idle speed for each testing point. The engine was first fueled with the pure ethanol and then hydrogen volume fraction in the total intake gas was gradually increased through increasing hydrogen injection duration. For a specified hydrogen addition level, ethanol flow rate was reduced to keep the hydrogen–ethanol–air mixture at stoichiometric condition. The test results showed that hydrogen addition was effective on reducing cyclic variations and improving indicated thermal efficiency of an ethanol engine at idle. The fuel energy flow rate was reduced by 20% when hydrogen volume fraction in the intake rose from 0% to 6.38%. Both flame development and propagation periods were shortened with the increase of hydrogen blending ratio. The heat transfer to the coolant was decreased and the degree of constant volume combustion was enhanced after hydrogen addition. HC and CO emissions were first reduced and then increased with the increase of hydrogen blending fraction. The acetaldehyde emission from the hydrogen-enriched ethanol engine is lower than that from the pure ethanol engine. However, the addition of hydrogen tended to increase NOx emissions from the ethanol engine at idle and stoichiometric conditions.  相似文献   

10.
As a hydrogen fuel for real-time production without storage, HHO has great research prospect and significance. In this paper, we conducted experiments on a spark ignition (SI) engine which has two independent fuel supply systems to compare two combination modes of gasoline port injection plus HHO (GPI + HHO) and gasoline direct injection plus HHO (GDI + HHO) at different HHO flow rate, λ, engine speed and load. The results show that, in both modes, HHO addition increases the maximum cylinder pressure and torque. With the increase of HHO flow rate, the flame development period and flame propagation period shorten, the crank angle corresponding to the maximum cylinder pressure is closer to top dead center. In addition, GDI + HHO mode has better engine performance. HHO has a significant effect on improving combustion stability. Especially at λ = 1.4, as HHO flow rate increases from 0 to 16 L/min, the coefficient of indicated mean effective pressure variation of GPI + HHO and GDI + HHO mode decreases by 69.17% and 58.29%, respectively. Moreover, HHO addition improves HC and CO emissions but increases NOx emissions. CO and HC emissions of GDI + HHO mode are the lowest under all conditions, and reaching the lowest value when HHO flow rate = 16 L/min. Besides, GDI + HHO mode not only has lower NO emissions under normal working conditions (λ = 1) but also can maintain a better combustion environment under lean-burn conditions (λ = 1.2, 1.4). In general, the application of HHO as fuel in engine can improve combustion and emission characteristics and GDI + HHO mode is the best combination of gasoline and HHO.  相似文献   

11.
This study reports the impacts of dual fuel mixtures on the theoretical performance characteristics of a spark ignition engine (SIE). The effects of addition of liquefied hydrogen, methane, butane, propane (additive fuels) into gasoline, iso-octane, benzene, toluene, hexane, ethanol and methanol fuels (primary fuels) on the variation of power, indicated mean effective pressure (IMEP), thermal efficiency, exergy efficiency, were examined by using a combustion model. The fuel additives were ranged from 10 to 50% by mass. The results exhibited that the ratios of hydrogen, methane, butane, propane noticeably affect the performance of the engine. The maximum increase ratio of power is 82.59% with 50% of toluene ratio and its maximum decrease ratio is 10.84% with 50% of methanol ratio in hydrogen mixtures. The maximum increase ratio of thermal efficiency and exergy efficiency are observed as 26.75% and 32.23% with the combustion of benzene-hydrogen mixtures. The maximum decrease ratio of thermal efficiency is 29.71% with the combustion of 50% of methanol ratio and it is 21.95% for the exergy efficieny with the combustion of 50% of ethanol ratio in hydrogen mixtures. The power, IMEP, thermal efficiency and exergy efficiency of primary fuels demonstrate different variation characteristics with respect to type and ratio of additive fuels.  相似文献   

12.
为提高航空煤油在点燃式发动机中的燃烧热效率,改善发动机爆震及拓宽发动机负荷范围,以3号航空煤油(RP3)为基础燃料,以乙醇为辅助燃料,基于一台单缸水冷、压缩比可调、四冲程点燃式发动机结合高压共轨缸内直喷技术,开展了不同负荷、不同乙醇和航空煤油掺混比、不同喷射压力、不同喷射时刻下航空煤油燃烧特性的试验研究。结果表明,在压缩比为7的条件下,由于爆震的限制,发动机负荷仅能达到原机的72.0%。而乙醇具有较强的抑制爆震的能力,随着乙醇在航空煤油中掺混比例的增加,发动机负荷区间不断拓展,当乙醇的掺混比为10%时发动机可实现全负荷工作。继续增大乙醇的掺混比例,可进一步提升功率并降低油耗。为探究喷油时刻对动力性、经济性的影响,试验测定了5种喷油时刻对燃烧性能的影响。当喷油时刻为压缩上止点前300°时,发动机具有较好的动力性;当喷油时刻为上止点前360°时,发动机具有较好的经济性。  相似文献   

13.
In this study, the effects of hydrogen addition on the engine performance were investigated using spark ignition engine fueled gasoline with a compression ratio of 15 at an air excess ratio (λ) of 1.8 and above. At λ = 1.8, the indicated thermal efficiency at the spark timing of the knock limit reached the maximum level under the conditions in which the hydrogen fraction was set to 4% of the heating value of the total fuel. Based on a heat balance analysis, the best hydrogen fraction was found as a balance between the improvement in the burning efficiency and the increase in heat loss. The lean limit was extended when the hydrogen fraction was increased from λ = 1.80 to λ = 2.28. The hydrogen addition achieved the maximum indicated thermal efficiency at spark timing of the knock limit was obtained at λ = 2.04, where the hydrogen fraction was 10%.  相似文献   

14.
The main challenge on the fueling of pure hydrogen in the automotive vehicles is the limitation in the hydrogen separation from the product of steam reforming and gasification plants and the storage issues. On the other hand, hydrogen fueling in automotive engines has resulted in uncontrolled combustion. These are some of the factors which motivated for the fueling of raw syngas instead of further chemical or physical processes. However, fueling of syngas alone in the combustion chamber has resulted in decreased power output and increased in brake specific fuel consumption. Methane augmented hydrogen rich syngas was investigated experimentally to observe the behavior of the combustion with the variation of the fuel-air mixture and engine speed of a direct-injection spark-ignition (DI SI) engine. The molar ratio of the high hydrogen syngas is 50% H2 and 50% CO composition. The amount of methane used for augmentation was 20% (V/V). The compression ratio of 14:1 gas engine operating at full throttle position (the throttle is fully opened) with the start of the injection selected to simulate the partial DI (180° before top dead center (BTDC)). The relative air-fuel ratio (λ) was set at lean mixture condition and the engine speed ranging from 1500 to 2400 revolutions per minute (rpm) with an interval of 300 rpm. The result indicated that coefficient of variation of the indicate mean effective pressure (COV of IMEP) was observed to increase with an increase with λ in all speeds. The durations of the flame development and rapid burning stages of the combustion has increased with an increase in λ. Besides, all the combustion durations are shown to be more sensitive to λ at the lowest speed as compared to the two engine speeds.  相似文献   

15.
Low flame speed restrains engine efficiency and increases HC emissions in rotary engines. Hydrogen addition and turbulent jet ignition have a great potential in increasing engine performance as they increase fuel burning speed. In this study, the classical R13b-Renesis Wankel engine and a modified one with a turbulent jet ignition configuration are numerically investigated by using hydrogen as a supplement. Eccentric motion of the rotor was generated by using User Defined Function in ANSYS-Fluent software. Pure methane and methane blended with 3% and 6% hydrogen energy fractions were used as fuels in the calculations. Combustion was modeled by using reduced mechanism of hydrogen-methane combustion having 22 species and 104 reactions. The Wankel engine was simulated at 2000 rpm speed and partial load conditions. At first, classical engine configuration having two spark plugs was simulated with pure methane. Then, hydrogen blended methane simulations were conducted to investigate the benefits of the hydrogen addition. Similar procedure was applied for the turbulent jet ignition application. The results show that both approaches are effective on increasing the burning speed of the fuel. It is revealed that hydrogen addition increases the indicated mean effective pressure (IMEP) by 1.8% and 5.2% for 3% and 6% hydrogen fraction cases respectively in the classical engine. Turbulent jet ignition with pure methane increases IMEP by 4.7% compared to the classical engine. Hydrogen addition only in pre-chamber is effective as much as 6% hydrogen fraction of classical engine. As the burning speed is increased by the application of these methods, CO and HC emissions are reduced and NO emission is increased. It is concluded that benefits of hydrogen addition and turbulent jet ignition applications can be optimized for both reducing harmful emissions and increasing engine performance.  相似文献   

16.
Limitations on the upgradation of biogas to biomethane in terms of cost effectiveness and technology maturity levels for stationary power generation purpose in rural applications have redirected the research focus towards possibilities for enhancement of biogas fuel quality by blending with superior quality fuels. In this work, the effect of hydrogen enrichment on performance, combustion and emission characteristics of a single-cylinder, four-stroke, water-cooled, biogas fuelled spark-ignition engine operated at the compression ratio of 10:1 and 1500 rpm has been evaluated using experimental and computational (CFD) studies. The percentage share of hydrogen in the inducted biogas fuel mixture was increased from 0 to 30%, and engine characteristics with pure methane fuel was considered as a baseline for comparative analysis. The CFD model is developed in Converge CFD software for a better understanding on combustion phenomenon and is validated with experimental data. In addition, the percentage share of hydrogen enrichment which would serve as a compromise between biogas upgradation cost and engine characteristics is also identified. The results of study indicated an enhancement in combustion characteristics (peak in-cylinder pressure increased; COVIMEP reduced from 9.87% to 1.66%; flame initiation and combustion durations reduced) and emission characteristics (hydrocarbon emissions reduced, and NOx emissions increased but still lower than pure methane) with increase in hydrogen share from 0 to 30% in biogas fuelled SI engine. Flame propagation speed increased and combustion duration reduced with hydrogen supplementation and the same was evident from the results of the CFD model. Performance of the engine increased with increase in hydrogen share up to 20% and further increment in hydrogen share degraded the performance, owing to heat losses and the enhancement in combustion characteristics were relatively small. Overall, it was found that 20% blending of hydrogen in the inducted biogas fuel mixture will be effective in enhancing the engine characteristics of biogas fuelled engines for stationary power generation applications and it holds a good compromise between biogas upgradation cost and engine performance.  相似文献   

17.
A number of studies on hydrogen engines have targeted small-sized engines for passenger vehicles. By contrast, the present study focuses on a large-sized engine for a stationary power generator. The objective of this study is to simultaneously achieve low NOx emission without aftertreatment, and high thermal efficiency and torque. Experimental analysis has been conducted on a single-cylinder test engine equipped with a gas injector for direct hydrogen injection. The injection strategy adopted in this study aims generating inhomogeneity of hydrogen mixtures within the engine cylinder by setting the injection pressure at a relatively low level while injecting hydrogen through small orifices. High levels of EGR and increased intake boost pressures are also adopted to reduce NOx emission and enhance torque. The results showed that extreme levels of EGR and air-fuel inhomogeneity can suppress NOx emission and the occurrence of abnormal combustion with little negative impact on the efficiency of hydrogen combustion. The maximum IMEP achieved under these conditions is 1.46 MPa (135 Nm@1000 rpm) with engine-out NOx emission of less than 150 ppm (ISNOx < 0.55 g/kW) for an intake boost pressure of 175 kPa and EGR rate of around 50%. To achieve further improvement of the IMEP and thermal efficiency, the Atkinson/Miller cycle was attempted by increasing the expansion ratio and retarding the intake valve closing time of the engine. The test engine used in this study finally achieved an IMEP of 1.64 MPa (150 Nm@1000 rpm) with less than 100 ppm of NOx emission (ISNOx < 0.36 g/kWh) and more than 50% of ITE.  相似文献   

18.
The idle performance of an 11-L, 6-cylinder engine equipped with a turbocharger and an intercooler was investigated for both compressed natural gas (CNG) and hydrogen-blended CNG (HCNG) fuels. HCNG, composed of 70% CNG and 30% hydrogen in volume, was used not only because it ensured a sufficient travel distance for each fueling, but also because it was the optimal blending rate to satisfy EURO-6 emission regulation according to the authors' previous studies. The engine test results demonstrate that the use of HCNG enhanced idle combustion stability and extended the lean operational limit from excess air ratio (λ) = 1.5 (CNG) to 1.6. A decrease of more than 25% in the fuel consumption rate was achieved in HCNG idle operations compared to CNG. Total hydrocarbon and carbon monoxide emissions decreased when fueled with HCNG at idle because of the low carbon content and enhanced combustion characteristics. In particular, despite hydrogen enrichment, less nitrogen oxides (NOx) were emitted with HCNG operations because the amount of fuel supplied for a stable idle was lower than with CNG operations, which eventually induced lower peak in-cylinder combustion temperature. This low HCNG fuel quantity in idle condition also induced a continuous decrease in NOx emissions with an increase in λ. The idle engine test results also indicate that cold-start performance can deteriorate owing to low exhaust gas temperature, when fueled with HCNG. Therefore, potential solutions were discussed, including combustion strategies such as retardation of spark ignition timing combined with leaner air/fuel ratios.  相似文献   

19.
Fuel injection pressure and injection timing are two extensive injection parameters that affect engine performance, combustion, and emissions. This study aims to improve the performance, combustion, and emissions characteristics of a diesel engine by using karanja biodiesel with a flow rate of 10 L per minute (lpm) of enriched hydrogen. In addition, the research mainly focused on the use of biodiesel with hydrogen as an alternative to diesel fuel, which is in rapidly declining demand. The experiments were carried out at a constant speed of 1500 rpm on a single-cylinder, four-stroke, direct injection diesel engine. The experiments are carried out with variable fuel injection pressure of 220, 240, and 260 bar, and injection timings of 21, 23, and 25 °CA before top dead center (bTDC). Results show that karanja biodiesel with enriched hydrogen (KB20H10) increases BTE by 4% than diesel fuel at 240 bar injection pressure and 23° CA bTDC injection timing. For blend KB20H10, the emissions of UHC, CO, and smoke opacity are 33%, 16%, and 28.7% lower than for diesel. On the other hand NOx emissions, rises by 10.3%. The optimal injection parameters for blend KB20H10 were found to be 240 bar injection pressure and 23 °CA bTDC injection timing based on the significant improvement in performance, combustion, and reduction in exhaust emissions.  相似文献   

20.
Rotary engine is an ideal electric vehicle range extender.However,the combustion chamber of rotary engine is very narrow and long at the top dead center,which is detrimental to fuel combustion performance.In order to improve its economic and emission performance,this paper built an ethanol/gasoline dual-fuel rotary engine test bench,and the combustion and emission performance of gasoline rotary engine under five ethanol blending ratios were studied.The experimental results showed that,when the fuel pulse width is not adjusted,since the calorific value of ethanol is lower than that of gasoline and the latent heat of vaporization of ethanol is higher than that of gasoline,the addition of ethanol in gasoline lowers the peak pressure.When the ethanol blending ratio reaches 30 vol%,the pressure curve shows a distinct double peak.Under the theoretical air-fuel ratio condition,mixing ethanol in gasoline increases the heat release rate,shortens the combustion duration while prolonging delay period.After blending ethanol,HC,CO and NO_x emissions have been reduced under various operating conditions.Excessive ethanol blending ratio increases NO_x emissions and increases cycle variation coefficient.When the ethanol blending ratio is 15 vol%,it has better power ability while maintaining low cycle variation coefficient and emissions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号