首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 765 毫秒
1.
In order to investigate the relationship between high frequency tangential instability and continuous rotating detonation, series of H2/Air rotating detonations are experimentally achieved in the hollow chamber with double injection sections. In the center part, gaseous H2 and air injected by co-axial injector. Near the outer wall, the same propellants are injected in the form of slit-orifice collision. By keeping the total air mass flow rate approximately constant, varying the mixture of the inner and outer injection, series experiments are conducted in the test model with or without Laval nozzle. The results verify the possibility of rotating detonation in the hollow chamber with co-axial injector. To clarify the relationship between continuous rotating detonation and high frequency tangential combustion instability, the intrinsic frequencies of the test model are captured to be compared with propagation frequencies of detonation waves. The results show that they are close to each other when enough propellant assembled near the outer wall. In the combustor, the flame direction in constant pressure mode can change itself into rotating direction spontaneously. The results indicate that rotating detonation is an implication to high frequency tangential instability.  相似文献   

2.
Rotating detonation using ammonia as fuel may be a potential carbon free combustion technology for gas turbine. The detonation wave structure and flow field of a rotating detonation annular combustor are investigated by three-dimensional simulation with detailed chemistry of ammonia/hydrogen-air. The detonation properties, propagation mode, combustor performance and emission characteristics are studied by varying the equivalence ratios and hydrogen concentrations. Both the increases of the combustor pressure and the hydrogen concentration promote the chemical reaction rate of the ammonia burn and the detonation wave velocity gradually increases with increasing hydrogen proportion based on one-dimensional simulation. A stable single-rotating waves resulting in ammonia/hydrogen combustor are observed for a wide range of equivalent ratios only when the hydrogen concentration is at least 0.2. The steady run of the single rotating detonation had an optimal cycle efficiency when the hydrogen concentration is increased to a critical value of 0.3. NOx emissions are more dependent on equivalent ratios than hydrogen concentration in equivalence ratios ranging from 0.70 to 1.40.  相似文献   

3.
Pre-detonators are commonly used in rotating detonation engine (RDE) experiments. Current experimental studies focus on the performance of pre-detonator while ignoring the influence of pre-detonator on the flow field. In numerical simulations one-dimensional detonation wave is usually used to ignite the fresh gas in RDE. This is a simplification of the pre-detonator used in practical hotfire tests. But the coupling between the pre-detonator and the combustor is ignored. The aim of the present study is to study the influence of pre-detonator on the flow field in the RDE. A model of RDE with a pre-detonator is built, in which three-dimensional numerical simulations fueled with hydrogen/air is performed. The influence of pre-detonator on the combustor in different stages is studied. After initiation, detonation wave from the pre-detonator forms two counter-rotating detonation waves. The tangential installation of pre-detonator fails in directional initiation of detonation wave. The coupling effect is shown as the reflection and expulsion of shock wave. Detonation wave or oblique shock wave in the combustion chamber enters the pre-detonator and turns into shock wave before colliding with the end and re-entering the combustion chamber. Under some circumstances, the reflected shock wave will initiate a detonation wave and affect the wave structure in the combustion chamber. In the stable stage, the reflected shock wave has no effect on the flow field. However, periodic collision of reflected shock wave with detonation wave at the junction causes ablation in long-time experiments. Increasing the axial distance between pre-detonator and injection wall is expected to be a solution for the ablation problem.  相似文献   

4.
Typical injection schemes of rotating detonation combustors inject fuel locally into the combustion channel, creating stratified fuel-rich and fuel-lean mixing regions. In this study, premixed hydrogen and air rotating detonations are explored in a rotating detonation combustor through premixing part of the fuel into the oxidizer flow. The objective is to investigate the effect of premixing on the operation of the combustor. Three premixing schemes are examined where the detonation wave speeds are analyzed. The results show that in premixing, the fuel-lean regions became more favorable for continuous detonation propagation when premixed with the bypass fuel, resulting in higher detonation wave speeds. This phenomenon is shown to be independent of the global fuel-air equivalence ratio and the amount of fuel premixed into the oxidizer. As such, combustor performance and the operational regime could be improved with lean hydrogen premixing amounts in the main flow oxidizer.  相似文献   

5.
In order to investigate the formation process and propagation characteristics of detonation wave, developing process of detonation wave from initiation to stable detonation formation under non-premixed conditions has been studied by experiments and numerical simulation. The results show that when mass flow rates of air and hydrogen are 158.957 g/s and 2.728 g/s respectively, stable detonation can be formed in the combustor. Due to the lower inlet pressure, there is an unstable stage in combustor before the stable detonation is formed. Reducing the air pressure will increase the lowest detonation limit of combustor and lead to flame-out and re-initiation in the combustor. The propagation direction of detonation wave may change after re-initiation. Non-premixed intake structure lead to the inconsistency of rotating detonation combustion fluid in the radial direction. Moreover, peak pressure appears near the outer wall, while peak temperature appears near the inner wall.  相似文献   

6.
In this paper, a three dimensional numerical investigation was carried out to study the formation and propagation characteristics of non-premixed rotating detonation wave using H2/air as reactive mixtures. At a constant global equivalence ratio, the effects of inlet mass flow rates of H2 and air on various performance parameters of rotating detonation wave and based on it combustor were analyzed in detail. On this basis, the mode switching process of rotating detonation wave caused by transiently changing the inlet mass flow rates was also discussed. The numerical results showed that inlet mass flow rates of H2 and air played a very critical role in the formation, propagation and mode switching of rotating detonation wave. With the increase of inlet mass flow rates, rotating detonation wave could be switched from single wave to double waves. The propagation direction of double waves depended on the changing process of inlet mass flow rates. Meanwhile, compared to the single wave, double waves or its based combustor had the obvious advantages in formation time, stability and thrust, but had disadvantage in pressure ratio. In addition, both fill characteristics and mixing quality of fresh reactive mixtures are the underlying important mechanisms to explain the effects of inlet mass flow rates on rotating detonation waves.  相似文献   

7.
Three-dimensional numerical simulations are performed to study the initiation process of the rotating detonation combustor initiated by a pre-detonator. Navier-Stokes equations are solved with a 7-species and 8-steps H2/Air chemical reaction mechanism. Three different injection patterns are considered, including the inner-slit injection, outer-slit injection and mid-slit injection. A single stable rotating detonation wave is established finally for all three injection patterns. Firstly, the initiator dynamics of the pre-detonator is discussed. The initial detonation wave spreads into the combustor from the pre-detonator and two oppositely propagating detonation waves are formed in the combustor in all cases, causing wave collisions. Similar fresh gas injection disturbance is seen, suggesting the little effect of different injection patterns at the beginning. After the recovery of the injection, ‘L-form’ fresh mixture layers are formed in the inner-slit/outer-slit injection patterns, leading to a rapid establishment of stable propagation mode. While in the mid-injection pattern, transition of fresh mixture layer structure is seen from ‘I-form’ to ‘L-form’. Severe lateral expansion exists during this period, resulting in a long-term wave initiation.  相似文献   

8.
rotating direction of detonation waves is one of the essential characteristics of the unsteady flow fields in the rotating detonation combustors (RDCs). However, it changes over time and is challenging to predict. Pre-detonator is commonly used to initiate the RDC in experiments. Intuitively, the detonation wave should continue in the direction of the pre-detonator. Unfortunately, experimental results often contradict this expectation. Three-dimensional numerical simulations of a rotating detonation combustor installed with a pre-detonator are performed in the present study. The numerical experiments show that the pre-detonator induces two counter-rotating detonation waves in the annular chamber and fails in fixed-direction initiation. Furthermore, we propose an active direction control method in the present study. This method utilizes the pre-detonator as a control device and successfully regulates the detonation waves along the pre-detonator direction. The active direction control method allows adjusting the propagating direction of detonation waves anytime during the RDC operation. By this method, multiple waves tend to be produced in the flow field, enhancing the stability of the rotating detonation combustor.  相似文献   

9.
A three-dimensional numerical simulation of rotating detonation engine (RDE) with hollow combustor is performed to analyze wave structure evolution systematically. Wave structure evolution is classified into four categories, namely two-wave collision (counter-rotating waves), abscission of detonation tail, and shock wave to detonation transition. Two-wave collision consists of symmetric detonation collision, asymmetric detonation collision, and detonation/shock collision. Two symmetric detonation waves turn into shock waves after collision. Collision of asymmetric detonation waves creates single detonation wave. The detonation/shock collision decreases the detonation wave intensity. Abscission of detonation tail and shock to detonation transition can both create single detonation wave or two opposite-direction detonation waves, depending on the wave hitting angle and the amount of fresh gas. All phenomena mentioned above affect the number of detonation waves in the combustion chamber.  相似文献   

10.
Rotating detonation engines are studied more and more widely because of high thermodynamic efficiency and high specific impulse. Generally one detonation wave exists in the engines but sometimes multiple detonation waves appear, as is complicated and difficult to explain. Increasing the number of rotating detonation waves uniforms the flow field and weakens the combustion instabilities. A controllable way to induce multiple detonation waves is introduced here. Rotating detonation engine runs with a single detonation wave or multiple detonation waves were both conducted. Pressure sensors were used to record the pressure traces of rotating detonation waves and gas flow controllers controlled the flow rates of reactants. Tangential flow of reactants from the predetonator produces shock waves moving upstream, inducing multiple rotating detonation waves when there is axial flow of reactants from the head of the combustor. The maximum number of detonation waves is subject to the flow rates.  相似文献   

11.
The pronounced interest in rotating detonation combustors (RDC) in recent years has witnessed the investigation of multiple facets of the combustor, like reactants, injection schemes and combustor geometry. The issue of instabilities in RDCs is a nascent field, and requires both the identification, and the subsequent explanation of different instability mechanisms. In particular, we are concerned with the low frequency instability exhibited by the detonation wave. This is attributed to two different types of low frequency instabilities—amplitude and frequency modulated—that are discovered in the air plenum of an RDC, and subsequently discussed. The occurrence of these instabilities is observed to depend on the fuel injection scheme used and the air flow rates through the combustor. The amplitude modulated instability in the air inlet is spatially varying, and rotates in a direction opposite to the direction of the detonation wave. At higher air flow rates, and thus higher pressure ratios across the air injection, this instability disappears. A preliminary hypothesis is proposed to explain this amplitude modulation.  相似文献   

12.
Experiments are performed on continuous detonation combustion of ternary hydrogen–liquid propane–air mixture in a large-scale annular combustor 406 mm in outer diameter with an annular gap of 25 mm. Liquid propane is fed into the combustor at the time when sustained continuous-detonation combustion of hydrogen–air mixture is attained therein. Mass flow rates of hydrogen, propane and air in the experiments ranged from 0.1 to 0.5 kg/s (hydrogen), 0.1 to 0.5 kg/s (propane), and 5 to 12 kg/s (air). Continuous-detonation combustion of liquid propane in air is obtained for the first time due to addition of hydrogen rather than due to enrichment of air with oxygen. Combustor operation with a single continuously rotating detonation wave (DW) for about 0.1 s has been obtained when the flow rates of propane and air remained constant while the flow rate of hydrogen was rapidly decreasing.  相似文献   

13.
Rotating detonation as a kind of pressure gain combustion is expected to greatly improve efficiency when applied to gas turbine engines. In this paper, the operation of rotating detonation combustor and turbine rotor blade was studied. Firstly, the analysis of the interaction between detonation wave and turbine blade shows that the compression of gas by detonation wave and reflected wave will lead to a sharp increase in the temperature at the wall of blade. When the detonation wave propagates, the oscillation amplitudes of pressure and temperature at the turbine inlet are 70% and 75% respectively, and the detonation oblique shock will change the flow trajectory of the air flow, resulting in the flow direction deviating from the incident angle. Then the comparison between detonation and deflagration shows that the total pressure of detonation is higher and will have greater work potential. The torque generated by the blades under detonation has the characteristics of high-frequency oscillation, which may be detrimental to the operation of the engine.  相似文献   

14.
Rotating detonation engine has been widely studied in recent years because of its high theoretical efficiency and heat release rate. In many numerical simulations, the combustible mixture is injected and fully filled at the head of the combustor. In this paper, annular injection slits are proposed and three representative injection patterns are simulated by changing the injection directions. Stable single-wave modes are formed in all three patterns and two kinds of combustible mixture layer structures are found, namely “L-shape” and “T-shape” structures. Following the combustible mixture layer, the detonation wave is not fully filled in the radial direction, thus radial and circumferential shock waves are induced from the detonation wave, forming more complex wave structures. After the radial shock wave, velocity vortex and significant deflagration are found and propagate with the shock wave, thus maintaining a higher pressure and temperature there.  相似文献   

15.
In order to investigate the effects of gas mixture components on the combustion characteristics of rotating detonation wave, two-dimensional simulation is presented to simulate the propagation process of rotating detonation wave with different methane conversions. The results indicate that there are five propagation modes of rotating detonation wave with different components: single-wave mode, single wave with counter-rotating components mode, double-waves mode, triple-waves mode and quadruple-waves mode. The detonation wave propagates along the forward direction in all five modes. With the increase of methane conversion, multi-wave mode appears in the combustion chamber. The fuel component has a great influence on the heat release ratio of detonation combustion. The velocity of detonation wave decreases with the increase of methane conversion. With the increase of methane conversion, the chemical reaction rate gradually increases, which leads to the intensification of chemical reaction on the deflagration surface. The reaction on the deflagration surface develops to the unburned fuel zone, which eventually leads to the formation of compression waves and shock waves in the fuel refill zone. When the shock wave sweeps through the fresh premixed gas, the reactant is compressed to form a detonation point and then ignite the fuel. A new detonation wave is finally formed. The total pressure ratio decreases with the increasing methane conversion, and the uniformity of the total pressure of outlet decreases with increasing methane conversion.  相似文献   

16.
To investigate low frequency instability in a H2/air plane-radial rotating detonation engine, simultaneous visualization, pressure, and ion measurements are performed. Changing reactants mass flow rate and equivalence ratio, two low frequency instabilities, amplitude low frequency instability (ALFI) and amplitude-frequency low frequency instability (AFLFI) are discovered, characterized by periodic sinusoidal oscillations of detonation-wave parameters. The operating conditions of low frequency instabilities are also summarized. The ALFI with periodic fluctuations of detonation-wave pressure peak mostly occurs in single-wave modes and symmetric dual-wave modes, operating near the critical conditions of modes switching. Almost all asymmetric dual-wave modes and some triple-wave modes exhibit some degree of AFLFI characterized by periodic waxing and waning of detonation-wave pressure peak and velocity. Each low-frequency cycle contains several to dozens of rotating detonation laps. Obvious high-frequency and low-frequency oscillations are observed in air plenum, with exactly the same frequency as that in the combustor but lower amplitudes and some phase difference. The interaction between plenum and combustor affects detonation stability.  相似文献   

17.
The rotating detonation engine is a new machine that can generate thrust via continuous rotating detonation waves (RDWs). In this study, experiments were performed on a structure combining a rotating detonation combustor (RDC) and a turbine guide vane to investigate the propagation characteristic of hydrogen-air RDW. The results showed that the velocity of detonation wave initially increased and then decreased with the increase of equivalence ratio, and it got a velocity of 84% Chapman-Jouguet value. The velocity of detonation wave generally rose by 4.31% comparing with the no guide vane tests, while the scope of steady-operation state became narrow. The oscillation pressure was reduced by 64% after passing through the guide vane, and the magnitude of pressure was only 0.4 bar at the guide vane exit. Meanwhile, part of the shock wave was reflected back to combustor resulting in some small pressure disturbances, and the propagation mode of reflected wave was related to the propagation direction of RDW.  相似文献   

18.
Numerical investigation of a non-premixed hollow rotating detonation engine   总被引:2,自引:0,他引:2  
Rotating detonation engines (RDEs) are widely studied because of their compact configurations and high thermal cycle efficiency. In this paper, a series of numerical investigations of a non-premixed hollow RDE are performed. The transient explicit density-based solver in ANSYS Fluent is used to perform the simulations. For a hollow RDE without Laval nozzle, there is only one rotating detonation wave in the combustion chamber. Compared to the traditional annular RDE, the mixing quality is deteriorated, and the thrust of the engine decreases and becomes more unstable. When the hollow RDE is attached with a Laval nozzle, there are two rotating detonation waves in the combustion chamber. The pressure within the combustion chamber increases while the axial velocity decreases. The mixing quality is improved. The height of detonation waves decreases with larger contraction ratio of the nozzle. A Laval nozzle is beneficial for a hollow RDE to achieve steadier operation and higher thrust output. When the contraction ratio is 4, the propulsive performance of the engine is the highest. The maximum thrust achieved is 840 N.  相似文献   

19.
To pinpoint the relationship between high frequency tangential instability(HFTI) and continuous rotating detonation (CRD), series of H2/Air rotating detonations are experimentally achieved in the hollow chamber with Laval nozzle. The contraction ratio of the nozzle has a significant effect on the detonation. The detonation waves number increases with the increasing of equivalence ratio (ER) or nozzle contraction ratio. Based on its character, a new type of detonation is defined as two dominant peak one wave mode (TDPO). The velocities of detonation waves propagating in this new mode are larger than the Chapman-Jouguet (CJ) theoretic value. On the assumption that the reflection wave is rotated with the detonation wave, this mode is well illustrated. The forming process of two waves is also given. The results show that the appearance of combustion mode is relative to the reflection wave generated at the contraction section of the nozzle. The inner mechanism of the refection wave is illustrated. These works make a foundation to investigate the relationship between rotating detonation and tangential instability.  相似文献   

20.
The rotating detonation combustor can be applied to the turbine engine to develop into a new power device, and the liquid-fuel/air rotating denotation has important research significance for engine applications. In this research, the propagation characteristics of liquid-fuel/air rotating detonation wave were experimentally investigated. A hydrocarbon mixture—liquid gasoline was employed for the fuel, the oxidizer was high-temperature air preheated by a hydrogen-oxygen heater, and the rotating detonation wave was initiated via a hydrogen-oxygen pre-detonator. The effects of the equivalence ratio, ignition pressure, and air total temperature on the propagation characteristics of the liquid-fuel rotating detonation wave were analyzed. The liquid-fuel/air continuous rotating detonation wave can be successfully obtained with a single-wave mode, and the velocity and peak pressure of the rotating detonation waves increase as the equivalence ratio increases. As the detonation-wave pressures at the outlet of the pre-detonator increase, the establishment time of the rotating detonation wave gradually decreases, and the average establishment time is 4.01 ms. Stable rotating detonation waves are obtained with the air total temperature of 600–800 K, but the intensity of the detonation wave has a large deficit due to some instabilities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号