首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The thermal hazards from ignited under-expanded cryogenic releases are not yet fully understood and reliable predictive tools are missing. This study aims at validation of a CFD model to simulate flame length and radiative heat flux for cryogenic hydrogen jet fires. The simulation results are compared against the experimental data by Sandia National Laboratories on cryogenic hydrogen fires from storage with pressure up to 5 bar abs and temperature in the range 48–82 K. The release source is modelled using the Ulster's notional nozzle theory. The problem is considered as steady-state. Three turbulence models were applied, and their performance was compared. The realizable k-ε model showed the best agreement with experimental flame length and radiative heat flux. Therefore, it has been employed in the CFD model along with Eddy Dissipation Concept for combustion and Discrete Ordinates (DO) model for radiation. A parametric study has been conducted to assess the effect of selected numerical and physical parameters on the simulations capability to reproduce experimental data. DO model discretisation is shown to strongly affect simulations, indicating 10 × 10 as minimum number of angular divisions to provide a convergence. The simulations have shown sensitivity to experimental parameters such as humidity and exhaust system volumetric flow rate, highlighting the importance of accurate and extended publication of experimental data to conduct precise numerical studies. The simulations correctly reproduced the radiative heat flux from cryogenic hydrogen jet fire at different locations.  相似文献   

2.
Thermal hazards from an under-expanded (900 bar) hydrogen jet fire have been numerically investigated. The simulation results have been compared with the flame length and radiative heat flux measured for the horizontal jet fire experiment conducted at INERIS. The release blowdown characteristics have been modelled using the volumetric source as an expanded implementation of the notional nozzle concept. The CFD study employs the realizable k-ε model for turbulence and the Eddy Dissipation Concept for combustion. Radiation has been taken into account through the Discrete Ordinates (DO) model. The results demonstrated good agreement with the experimental flame length. Performance of the model shall be improved to reproduce the radiative properties dynamics during the first stage of the release (time < 10 s), whereas, during the remaining blowdown time, the simulated radiative heat flux at five sensors followed the trend observed in the experiment.  相似文献   

3.
Comparison of Computational Fluid Dynamics (CFD) predictions with measurements is presented for cryo-compressed hydrogen vertical jets. The stagnation conditions of the experiments are characteristic of unintended leaks from pipe systems that connect cryogenic hydrogen storage tanks and could be encountered at a fuel cell refueling station. Jets with pressure up to 5 bar and temperatures just above the saturation liquid temperature were examined. Comparisons are made to the centerline mass fraction and temperature decay rates, the radial profiles of mass fraction and the contours of volume fraction. Two notional nozzle approaches are tested to model the under-expanded jet that was formed in the tests with pressures above 2 bar. In both approaches the mass and momentum balance from the throat to the notional nozzle are solved, while the temperature at the notional nozzle was assumed equal to the nozzle temperature in the first approach and was calculated by an energy balance in the second approach. The two approaches gave identical results. Satisfactory agreement with the measurements was found in terms of centerline mass fraction and temperature. However, for test with 3 and 4 bar release the concentration was overpredicted. Furthermore, a wider radial spread was observed in the predictions possibly revealing higher degree of diffusion using the k-ε turbulence model. An integral model for cryogenic jets was also developed and provided good results. Finally, a test simulation was performed with an ambient temperature jet and compared to the cold jet showing that warm jets decay faster than cold jets.  相似文献   

4.
Hydrogen fires may pose serious safety issues in vented compartments of nuclear reactor containment and fuel cell systems under hypothetical accidents. Experimental studies on vented hydrogen fires have been performed with the HYKA test facility at Karlsruhe Institute of Technology (KIT) within Work Package 4 (WP4) - hydrogen jet fire in a confined space of the European HyIndoor project. It has been observed that heat losses of the combustion products can significantly affect the combustion regimes of hydrogen fire as well as the pressure and thermal loads on the confinement structures. Dynamics of turbulent hydrogen jet fire in a vented enclosure was investigated using the CFD code GASFLOW-MPI. Effects of heat losses, including convective heat transfer, steam condensation and thermal radiation, have been studied. The unsteady characteristics of hydrogen jet fires can be successfully captured when the heat transfer mechanisms are considered. Both initial pressure peak and pressure decay were very well predicted compared to the experimental data. A pulsating process of flame extinction due to the consumption of oxygen and then self-ignition due to the inflow of fresh air was captured as well. However, in the adiabatic case without considering the heat loss effects, the pressure and temperature were considerably over-predicted and the major physical phenomena occurring in the combustion enclosure were not able to be reproduced while showing large discrepancies from the experimental observations. The effect of sustained hydrogen release on the jet fire dynamics was also investigated. It indicates that heat losses can have important implications and should be considered in hydrogen combustion simulations.  相似文献   

5.
Previous experimental results on full-scale jet fires induced by high-pressure hydrogen/natural gas transient leakage can only be suitable for solving practical engineering problems, or testing the limitation of previous models. Thus, this paper presents a theoretical framework for the high-pressure hydrogen/natural gas leakage and the subsequent jet fire. The proposed framework consists of a transient leakage model, a notional nozzle model, a jet flame size model, a radiative fraction correlation and a line source radiation model. The framework is validated by comparing the model predictions and experimental measurements of mass flow rate, total flame height and thermal radiation field of hydrogen, natural gas, hydrogen/natural gas mixture jet fires with a flame height up to 100 m. The comparison shows that the theoretical framework can give considerable predictions to properties of full-scale jet fires induced by high-pressure hydrogen/natural gas transient leakage.  相似文献   

6.
The performance of a composite hydrogen storage tank with TPRD in an engulfing fire is studied. The non-adiabatic tank blowdown model, including in fire conditions, using the under-expanded jet theory is described. The model input includes thermal parameters of hydrogen and tank materials, heat flux from a fire to the tank, TPRD diameter and TPRD initiation delay time. The unsteady heat transfer from surroundings through the tank wall and liner to hydrogen accounts for the degradation of the composite overwrap resin and melting of the liner. The model is validated against the blowdown experiment and the destructive fire test with a tank without TPRD. The model accurately reproduces experimentally measured hydrogen pressure and temperature dynamics, blowdown time, and tank's fire-resistance rating, i.e. time to tank rupture in a fire without TPRD. The lower limit for TPRD orifice diameter sufficient to prevent the tank rupture in a fire and, at the same time, to reduce the flame length and mitigate the pressure peaking phenomenon in a garage to exclude its destruction, is assessed for different tanks, e.g. it is 0.75 mm for largest studied 244 L, 70 MPa tank. The phenomenon of Type IV tank liner melting for TPRD with lower diameter is revealed and its influence on hydrogen blowdown is assessed. This phenomenon facilitates the blowdown yet requires further detailed experimental validation.  相似文献   

7.
This study is focused on understanding the structure and behaviour of hydrogen under-expanded jets from plane nozzles and their differences with circular nozzle jets. Results of numerical simulations of hydrogen highly under-expanded jets from a storage vessel at pressure 40 MPa through a circular nozzle and two plane nozzles with aspect ratios 5.0 and 12.8 respectively, all of the same cross-section area, are presented. Two stages approach is applied to simulate under-expanded unignited jets and jet fires. At the first stage, the high Mach number flow in a near field to the nozzle is simulated by compressible flow solver. At the second stage, incompressible flow solver is applied to simulated either unignited or combusting jets in the far from the nozzle field with “inner” boundary conditions taken from the first stage. The structure and behaviour of hydrogen plane highly under-expanded jets is scrutinised, including the switch-of-axis phenomenon when the exiting jet expands in the vicinity of the nozzle only in the direction of the minor nozzle axis while it contracts in the major axis direction. Simulations demonstrated that plane jets may provide faster concentration decay compared to axisymmetric jets with the same mass flow rate due to the difference in air entrainment. The concentration decay rate is shown to be a function of the plane nozzle aspect ratio. The eddy break-up model is applied to simulate under-expanded hydrogen jet fires from the equipment at pressure of 40 MPa. The circular and plane nozzle jet fire simulations are validated against experiments by Mogi and Horiguchi (2009). The simulations are in a good agreement with the experiment.  相似文献   

8.
This paper describes a combined experimental, analytical and numerical modelling investigation into hydrogen jet fires in a passively ventilated enclosure. The work was funded by the EU Fuel Cells and Hydrogen Joint Undertaking project Hyindoor. It is relevant to situations where hydrogen is stored or used indoors. In such situations passive ventilation can be used to prevent the formation of a flammable atmosphere following a release of hydrogen. Whilst a significant amount of work has been reported on unignited releases in passively ventilated enclosures and on outdoor hydrogen jet fires, very little is known about the behaviour of hydrogen jet fires in passively ventilated enclosures. This paper considers the effects of passive ventilation openings on the behaviour of hydrogen jet fires. A series of hydrogen jet fire experiments were carried out using a 31 m3 passively ventilated enclosure. The test programme included subsonic and chocked flow releases with varying hydrogen release rates and vent configurations. In most of the tests the hydrogen release rate was sufficiently low and the vent area sufficiently large to lead to a well-ventilated jet fire. In a limited number of tests the vent area was reduced, allowing under-ventilated conditions to be investigated. The behaviour of a jet fire in a passively ventilated enclosure depends on the hydrogen release rate, the vent area and the thermal properties of the enclosure. An analytical model was used to quantify the relative importance of the hydrogen release rate and vent area, whilst the influence of the thermal properties of the enclosure were investigated using a CFD model. Overall, the results indicate that passive ventilation openings that are sufficiently large to safely ventilate an unignited release will tend to be large enough to prevent a jet fire from becoming under-ventilated.  相似文献   

9.
A thermal failure model (TFM) is proposed to predict the failure probability of Aluminum Conductor Steel-Reinforced (ACSR) typed power line close to a large-scale jet fire of leaked high-pressure gases. It introduces a newly developed method for heat transfer from jet fires and a distribution model for conductor failure probability via IEEE Standard 738–2012. Comparisons covering van der Waals equation, jet flame length correlations (Chamberlain, Schefer, Molkov and Bradley) and thermal radiation models (point source, multi-point source and line source) were made to illustrate priority with respect to experimental measurement of large hydrogen and natural gas jet fires. Results show that a theoretical framework incorporating van der Waals equation, Molkov's correlation for jet flame length, radiative fraction model and point source model is adequately precise to predict high-pressure leakage process, total flame length and received radiant heat flux (far-field). Predicted total flame lengths of a large jet fire for nearby power lines within 50–200 m to the accident site correspond well to reported results and the conservative hazard ranges are predicted based on harm criteria of wood and Probit equations. In simulations, an acceptable safety distance for power line carrying 907 A and below is determined to be 150 m.  相似文献   

10.
This paper presents the results of a study of fluid flow and heat transfer of liquid hydrogen in a cryogenic storage tank with a heat pipe and an array of pump-nozzle units. A forced flow is directed onto the evaporator section of the heat pipe to prevent the liquid from boiling off when heat leaks through the tank wall insulation from the surroundings. An axisymmetric computational model was developed for the simulation of convective heat transfer in the system. Steady-state velocity and temperature fields were solved from this model by using the finite element method. Forty five configurations of geometry and velocity were considered. As the nozzle fluid speed increases, the values of the maximum, average, and spatial standard deviation of the temperature field decrease nonlinearly. Parametric analysis indicates that overall thermal performance of the system can be significantly improved by reducing the gap between the nozzle and the heat pipe, while maintaining the same fluid speed exiting the nozzle. It is also indicated that increased inlet tube length of the pump-nozzle unit results in slightly better thermal performance. Increased heat pipe length also improves thermal performance but only for low fluid speed.  相似文献   

11.
A possible consequence of pressurized hydrogen release is an under-expanded jet fire. Knowledge of the flame length, radiative heat flux as well as the effects of variations in ground reflectance is important for safety assessment. The present study applies an open source CFD code FireFOAM to study the radiation characteristics of hydrogen and hydrogen/methane jet fires. For combustion, the eddy dissipation concept for multi-component fuels recently developed by the authors in the large eddy simulation (LES) framework is used. The radiative heat is computed with the finite volume discrete ordinates model in conjunction with the weighted sum of grey gas model for the absorption/emission coefficient. The pseudo-diameter approach is used in which the corresponding parameters are calculated using the formulations of Birch et al. [24] with the thermodynamic properties corrected by the Able-Noble equation of state. The predicted flame length and radiant fraction are in good agreement with the measurements of Schefer et al. [2], Studer et al. [3] and Ekoto et al. [6]. In order to account for the effects of variation in ground surface reflectance, the emissivity of hydrogen flames was modified following Ekoto et al. [6]. Four cases with different ground reflectance are computed. The predictions show that the ground surface reflectance only has minor effect on the surface emissive power of the smaller hydrogen jet fire of Ekoto et al. [6]. The radiant fractions fluctuate from 0.168 to 0.176 close to the suggested value of 0.16 by Ekoto et al. [6] based on the analysis of their measurements.  相似文献   

12.
A design of experiments (DOE) matrix of CFD simulations is used to create a mathematical model able to calculate the heat transfer coefficient for nine circular confined air jets vertically impinging on a flat plate. Typical air jets dimensions and process parameter values used in glass tempering are evaluated. The flat plate temperature is set to the constant value of 640 °C. Two different values of jet diameter (4 mm, 8 mm), of air velocity at nozzle exit (110 m/s, 140 m/s), of jet-to-jet spacing (40 mm, 60 mm), of jet-to-plate distance (40 mm, 60 mm) and of nozzle height (20 mm, 60 mm) are considered. Implemented into a Visual Basic application, the mathematical model found allow the instant evaluation of heat transfer parameters and to optimize air jets parameter configuration.  相似文献   

13.
In the present work release and ignition experiments with horizontal cryogenic hydrogen jets at temperatures of 35–65 K and pressures from 0.7 to 3.5 MPa were performed in the ICESAFE facility at KIT. This facility is specially designed for experiments under steady-state sonic release conditions with constant temperature and pressure in the hydrogen reservoir. In distribution experiments the temperature, velocity, turbulence and concentration distribution of hydrogen with different circular nozzle diameters and reservoir conditions was investigated for releases into stagnant ambient air. Subsequent combustion experiments of hydrogen jets included investigations on the stability of the flame and its propagation behaviour as function of the ignition position. Furthermore combustion pressures and heat radiation from the sonic jet flame during the combustion process were measured. Safety distances were evaluated and an extrapolation model to other jet conditions was proposed. The results of this work provide novel data on cryogenic sonic hydrogen jets and give information on the hazard potential arising from leaks in liquid hydrogen reservoirs.  相似文献   

14.
Vehicle fires in the tunnel are a great threat to the safe operation of the tunnel. Due to the rapid development of the hydrogen economy, the fire due to the hydrogen leakage could not be avoided and may bring great damage to the passengers and infrastructure. Due to the large difference between pool fires of traditional fossil-fueled and jet fires of hydrogen-powered vehicles, it is in doubt whether the existing longitudinal ventilation design could still be effective for the safety issue of hydrogen powered vehicles. To solve this problem, it is necessary to compare temperature characteristics of hydrogen-powered and traditional vehicle fires with and without longitudinal ventilations. In present work, we conducted a numerical investigation to discuss the different temperature distributions of traditional and hydrogen-fueled vehicle fires. Results indicate that the high temperature zone of the pool fire only exists above the ceiling of the vehicle. For hydrogen-powered vehicle fire, the high-speed hydrogen jet with the strong inertial force could push the hot smoke flows back to the ground. The ceiling temperature of hydrogen-powered vehicle fire is larger since hydrogen-powered vehicle has a larger heat release rate and the fire hazard of jet fires bring more danger compared with the pool fire. Although the temperature stratification is also obvious for the hydrogen-powered vehicle fire, the air temperature in the lower region could be heated and still high enough to bring a great damage to the passengers’ lives. This is quite different with the traditional pool fire. In addition, the critical ventilation velocity is also discussed. The theoretical equation could well predicted the critical ventilation velocity of traditional vehicle fires. For hydrogen-powered vehicle fires, the critical ventilation velocity could reach up to 6 m/s. The theoretical equation could not well predict the critical ventilation velocity of hydrogen-powered vehicle fires due to exist of hydrogen jet fires.  相似文献   

15.
Cryo-compressed hydrogen storage has excellent volume and mass hydrogen storage density, which is the most likely way to meet the storage requirements proposed by United States Department of Energy(DOE). This paper contributes to propose and analyze a new cryogenic compressed hydrogen refueling station. The new type of low temperature and high-pressure hydrogenation station system can effectively reduce the problems such as too high liquefaction work when using liquid hydrogen as the gas source, the need to heat and regenerate to release hydrogen, and the damage of thermal stress on the storage tank during the filling process, so as to reduce the release of hydrogen and ensure the non-destructive filling of hydrogen. This paper focuses on the study of precooling process in filling. By establishing a heat transfer model, the dynamic trend of tank temperature with time in the precooling process of low-temperature and high-pressure hydrogen storage tank under constant pressure is studied. Two analysis methods are used to provide theoretical basis for the selection of inlet diameter of hydrogen storage tank. Through comparative analysis of the advantages and disadvantages of the two analysis methods, it is concluded that the analysis method of constant mass flow is more suitable for the selection in practical applications. According to it, the recommended diameter of the storage tank at the initial temperature of 300 K, 200 K and 100 K is selected, which are all 15 mm. It is further proved that the calculation method can meet the different storage tank states of hydrogen fuel cell vehicles when selecting the pipe diameter.  相似文献   

16.
In this paper, in order to evaluate the reliability of a fine water mist for the suppression of fires on hydrogen fuel cell ships, the fire dynamics simulator (FDS) software was used to simulate the jet fire process and the action of a fine water mist on a fire caused by a hydrogen leakage in the hydrogen storage tank areas of hydrogen fuel cell ships. The fire scenario was classified into vertical or horizontal jet fires according to the location of the leakage in the hydrogen storage tank area, and the suppression effects of a fine water mist on hydrogen jet fires under a different droplet size, spray velocity, and ambient wind speed were compared and analyzed. The results indicate that a fine water mist is not effective in extinguishing hydrogen jet fires; however, by selecting suitable parameters (a spray velocity of 30 m/s and average droplet size of 30 μm), it can effectively reduce the fire field temperature of hydrogen jet fires and prevent the fire from developing further. Increasing the average droplet size of the fine water mist results in a gradual degradation of the suppression effect, while a higher spray velocity of the mist enhances the suppression effect to a certain extent. The ambient wind speed is an important factor that influences the suppression effect of a fine water mist on hydrogen jet fires, and when this speed is less than 4 m/s, a fine water mist with a higher spray velocity and smaller average droplet size is still a superior way of suppressing fires.  相似文献   

17.
This study proposes a heat release rate (HRR) estimation method for a carrier loaded with fuel cell vehicles (FCVs) trapped in a tunnel fire. The carrier is divided into several parts, and the HRR is estimated by adding the HRRs of all system parts (carrier and FCVs). The HRR of one FCV was compared with that of a gasoline vehicle. The thermal fume behavior in longitudinally inclined tunnel fires was also investigated. Even a modest inclination hastened the thermal fume propagation of the FCV fires. Of relevance to the prevention of tunnel fire disasters, the thermal fume behavior differed between FCV and gasoline fires. For safety assessment of tunnel fires, the thermal fume behaviors of an FCV fire and gasoline vehicle fire in a tunnel were investigated by the proposed method. In the case of no longitudinal inclination, the thermal fume of the FCV fire arrived earlier than that of the gasoline vehicle fire (by 1 min at x = 200 m and over 4 min at x = 250 m) because of the emitted hydrogen gas. At 2% longitudinal inclination, the thermal fume of the FCV fire propagated to the downstream side 4 min before that of the gasoline vehicle fire. At 4% longitudinal inclination, the thermal fume propagated 50 m downstream of the initial fire after 10 min. Therefore, after the hydrogen emission, the thermal fume of the FCV fire traveled faster than that of the gasoline vehicle fire. The proposed HRR estimation method can contribute to the risk analysis of various types of tunnel fires.  相似文献   

18.
Evaluations of the performance of simplified engineering and CFD models are important to improve risk assessment tools e.g. to predict accurately releases from various types of hydrogen storages. These tools have to predict releases from a wide range of storage pressures (up to 80 MPa) and temperatures (down to 20 K), e.g. cryogenic compressed gas storage covers pressures up to 35 MPa and temperatures between 33 K and 338 K. Accurate calculations of high pressure releases require real gas EOS. This paper compares a number of EOS to predict hydrogen properties typical in different storage types. The vessel dynamics are modeled using a simplified engineering and a CFD model to evaluate the performance of various EOS to predict vessel pressures, temperatures mass flow rates and jet flame lengths. It is shown that the chosen EOS and the chosen specific heat capacity correlation are important to model accurately hydrogen releases at low temperatures.  相似文献   

19.
Numerical simulations have been carried out for large scale hydrogen explosions in a refuelling environment and in a model storage room. For the first scenario, a high pressure hydrogen jet released in a congested refuelling environment was ignited and the subsequent explosion analysed. The computational domain mimics the experimental set up for a vertical downwards release in a vehicle refuelling environment experimentally tested by Shirvill et al. [6]. For completeness of the analysis, an analytical model has also been developed to provide the transient pressure conditions at nozzle exit. The numerical study is based on the traditional computational fluid dynamics (CFD) techniques solving Reynolds averaged Navier-Stokes equations. The Pseudo diameter approach is used to bypass the shock-laden flow structure in the immediate vicinity of the nozzle. For combustion, the Turbulent Flame Closure (TFC) model is used while the shear stress transport (SST) model is used for turbulence. In the second scenario, premixed hydrogen-air clouds with different hydrogen concentrations from 15% to 60% in volume were ignited in a model storage room. Analysis was carried out to derive the dependence of overpressure on hydrogen concentrations for safety considerations.  相似文献   

20.
In this study, the numerical analysis and experimental measurements are conducted on the internal flow field and temperature distribution of ejectors with different throat diameters. The computational fluid dynamics (CFD) is used to simulate different ejectors and investigate the effects of Mach number, pressure, and temperature distributions. The hydrogen Entrainment Ratio (ER) of ejectors is also measured for proton exchange membrane fuel cell applications. The experimental measurements and simulations of the hydrogen Entrainment Ratio of the ejectors showed that the recovery efficiencies are 59%, 53%, and 33% for the pipe diameters of 0.5, 0.7, and 1.0 mm at the inlet pressures of 340 kPa, respectively. In different area ratios, the larger area ratio of the nozzle leads to greater difference between the diameter of the throat and the diameter of the throat outlet. This causes a smaller recovery rate. In the internal flow field of the ejector, higher recovery rate can be achieved by using the closer location of the positive shock wave to the nozzle outlet.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号