首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Hydrogen will be an important energy carrier in the future and hydrogen production has drawn a great deal of attention to its advantages in efficiency and environmental benefit. Catalytic steam reforming in this study was carried out in a fixed bed tubular reactor with sepiolite catalysts. Sepiolite catalysts modified with nickel (Ni) and molybdenum (Mo) were prepared using the precipitation method. Influential parameters such as temperature, catalyst, steam to carbon ratio (S/C), the feeding space velocity (WHSV), reforming length, and activity of catalyst were investigated and the yields of H2, CO, CH4, and CO2 were obtained. The result of this experiment shows that the acidified sepiolite catalyst with addition of the Ni and Mo greatly improves the activities of catalyst and effectively increases the yield of hydrogen. The favorable reaction condition is as follows: reaction temperature is 700–800 °C; S/C is 16–18; the feeding space velocity is 1.5–2.2 h−1, respectively.  相似文献   

2.
The distributed power generation of methanol steam reforming reactor combined with solid oxide fuel cell (SOFC) has the characteristics of outstanding economic advantages. In this paper, a methanol steam reforming reactor was designed which integrates catalyst combustion, vaporization and reforming. By catalyst combustion, it can achieve stable operation to supply fuel for kW-class SOFC in real time without additional heating equipment. The optimal operating condition of the reforming reactor is 523–553 K, and the steam to carbon ratio (S/C) is 1.2. To study the reforming performance, methanol steam reforming (MSR), methanol decomposition (MD), water-gas shift (WGS) were considered. Operating temperature is the greatest factor affecting reforming performance. The higher the reaction temperature, the lower the H2 and CO2, the higher the CO and the methanol conversion rate. The methanol conversion rate is up to 95.03%. The higher the liquid space velocity (LHSV), the lower the methanol conversion rate, the lowest is 90.7%. The temperature changes of the reforming reactor caused by the load change of stack takes about 30 min to reach new balance. Local hotspots within the reforming reactor lead to an excessive local temperature to test a small amount of CH4 in the reforming gas. The methanation reaction cannot be ignored at the operating temperature. The reforming gas contains 70–75% H2, 3–8% CO, 18–22% CO2 and 0.0004–0.3% CH4. Trace amounts of C2H6 and C2H4 are also found in some experiments. The reforming reactor can stably supply the fuel for up to 1125 W SOFC.  相似文献   

3.
Biogas is a renewable biofuel that contains a lot of CH4 and CO2. Biogas can be used to produce heat and electric power while reducing CH4, one of greenhouse gas emissions. As a result, it has been getting increasing academic attention. There are some application ways of biogas; biogas can produce hydrogen to feed a fuel cell by reforming process. Urea is also a hydrogen carrier and could produce hydrogen by steam reforming. This study then employes steam reforming of biogas and compares hydrogen-rich syngas production and carbon dioxide with various methane concentrations using steam and aqueous urea solution (AUS) by Thermodynamic analysis. The results show that the utilization of AUS as a replacement for steam enriches the production of H2 and CO and has a slight CO2 rise compared with pure biogas steam reforming at a temperature higher than 800 °C. However, CO2 formation is less than the initial CO2 in biogas. At the reaction temperature of 700 °C, carbon formation does not occur in the reforming process for steam/biogas ratios higher than 2. These conditions led to the highest H2, CO production, and reforming efficiency (about 125%). The results can be used as operation data for systems that combine biogas reforming and applied to solid oxide fuel cell (SOFC), which usually operates between 700 °C to 900 °C to generate electric power in the future.  相似文献   

4.
Thermodynamics of hydrogen production from conventional steam reforming (C-SR) and sorption-enhanced steam reforming (SE-SR) of bio-oil was performed under different conditions including reforming temperature, S/C ratio (the mole ratio of steam to carbon in the bio-oil), operating pressure and CaO/C ratio (the mole ratio of CaO to carbon in the bio-oil). Increasing temperature and S/C ratio, and decreasing the operating pressure were favorable to improve the hydrogen yield. Compared to C-SR, SE-SR had the significant advantage of higher hydrogen yield at lower desirable temperature, and showed a significant suppression for carbon formation. However excess CaO (CaO/C > 1) almost had no additional contribution to hydrogen production. Aimed to achieve the maximum utilization of bio-oil with as little energy consumption as possible, the influences of temperature and S/C ratio on the reforming performance (energy requirements and bio-oil consumption per unit volume of hydrogen produced, QD/H2 (kJ/Nm3) and YBio-oil/H2 (kg/Nm3)) were comprehensively evaluated using matrix analysis while ensuring the highest hydrogen yield as possible. The optimal operating parameters were confirmed at 650 °C, S/C = 2 for C-SR; and 550 °C, S/C = 2 for SE-SR. Under their respective optimal conditions, the YBio-oil/H2 of SE-SR is significant decreased, by 18.50% compared to that of C-SR, although the QD/H2 was slightly increased, just by 7.55%.  相似文献   

5.
Hydrogen production via steam reforming of methanol is carried out over Cu/(Ce,Gd)O2−x catalysts at 210–600 °C. The CO content in reformate is about 1% at 210–270 °C, which are the typical temperature for hydrogen production via steam reforming of methanol. Largest H2 yield and CO2 selectivity and smallest CO content are obtained at 240 °C. The formation rate of CO increases with increasing temperature. The average formation rate of CO becomes larger than that of CO2 at about 450 °C. The H2 yield, the CO2 selectivity and the CO content become constant at about 550 °C. At 240 °C, the smallest CO content is obtained with a catalyst weight of 0.5 g and a Cu content of 3 wt%. The H2 yield, defined as H2/(CO + CO2) in formation rates, at 240 °C is always 3 and not affected by the variations of either the catalyst weight or the Cu content.  相似文献   

6.
The effect of non-uniform temperature on the sorption-enhanced steam methane reforming (SE-SMR) in a tubular fixed-bed reactor with a constant wall temperature of 600 °C is investigated numerically by an experimentally verified unsteady two-dimensional model. The reactor uses Ni/Al2O3 as the reforming catalyst and CaO as the sorbent. The reaction of SMR is enhanced by removing the CO2 through the reaction of CaO + CO2 → CaCO3 based on the Le Chatelier's principle. A non-uniform temperature distribution instead of a uniform temperature in the reactor appears due to the rapid endothermic reaction of SMR followed by an exothermic reaction of CO2 sorption. For a small weight hourly space velocity (WHSV) of 0.67 h?1 before the CO2 breakthrough, both a low and a high temperature regions exist simultaneously in the catalyst/sorbent bed, and their sizes are enlarged and the temperature distribution is more non-uniform for a larger tube diameter (D). Both the CH4 conversion and the H2 molar fraction are slightly increased with the increase of D. Based on the parameters adopted in this work, the CH4 conversion, the H2 and CO molar fractions at D = 60 mm are 84.6%, 94.4%, and 0.63%, respectively. After CO2 breakthrough, the reaction of SMR dominates, and the reactor performance is remarkably reduced due to low reactor temperature.For a higher value of WHSV (4.03 h?1) before CO2 breakthrough, both the reaction times for SMR and CO2 sorption become much shorter. The size of low temperature region becomes larger, and the high temperature region inside the catalyst/sorbent bed doesn't exist for D ≥ 30 mm. The maximum temperature difference inside the catalyst/sorbent bed is greater than 67 °C. Both the CH4 conversion and H2 molar fraction are slightly decreased with the increase of D. However, this phenomenon is qualitatively opposite to that for small WHSV of 0.67 h?1. The CH4 conversion and H2 molar fraction at D = 60 mm are 52.6% and 78.7%, respectively, which are much lower than those for WHSV = 0.67 h?1.  相似文献   

7.
This paper presents thermodynamic analysis of commercial diesel with 50 ppm sulfur content for the three common modes of reforming operations. Thermodynamic analysis is done to get boundary data for carbon formation and to get the composition of various species for all modes and entire range of operations. For steam reforming operation, steam-to-carbon (S/C) ratio equal to or greater than 2 is required for carbon-free operation in entire temperature range (400–800 °C). However, selection of S/C ratio requires the balance between maximizing the hydrogen yield and minimizing the energy input both of which increase with increasing S/C ratio. For partial oxidation operation, O2/C ratio of 0.75 is preferable to maximize hydrogen yield but carbon formation can occur if regions of reactor experience temperatures lower than 700 °C. In case of autothermal reforming, for carbon-free operation, temperature of 750 °C, O2/C ratio in the range of 0.125–0.25 and S/C ratio greater than 1.25 and ideally 1.75 is recommended. However, enthalpy analysis indicates that it is not possible to reach to thermoneutral point at this condition so it is better to operate O2/C ratio 0.25 or little higher with constant heat supply. A set of three independent reactions is proposed that along with element balance equations can adequately describe the equilibrium composition of six major species—H2, CO2, CO, H2O, CH4, and C for the entire range of reforming operation.  相似文献   

8.
A pathway for hydrogen production from supercritical water reforming of glycerol integrated with in situ CO2 removal was proposed and analyzed. The thermodynamic analysis carried out by the minimizing Gibbs free energy method of three glycerol reforming processes for hydrogen production was investigated in terms of equilibrium compositions and energy consumption using AspenPlus™ simulator. The effect of operating condition, i.e., temperature, pressure, steam to glycerol (S/G) ratio, calcium oxide to glycerol (CaO/G) ratio, air to glycerol (A/G) ratio, and nickel oxide to glycerol (NiO/G) ratio on the hydrogen production was investigated. The optimum operating conditions under maximum H2 production were predicted at 450 °C (only steam reforming), 400 °C (for autothermal reforming and chemical looping reforming), 240 atm, S/G ratio of 40, CaO/G ratio of 2.5, A/G ratio of 1 (for autothermal reforming), and NiO/G ratio of 1 (for chemical looping reforming). Compared to three reforming processes, the steam reforming obtained the highest hydrogen purity and yield. Moreover, it was found that only autothermal reforming and chemical looping reforming were possible to operate under the thermal self-sufficient condition, which the hydrogen purity of chemical looping reforming (92.14%) was higher than that of autothermal reforming (52.98%). Under both the maximum H2 production and thermal self-sufficient conditions, the amount of CO was found below 50 ppm for all reforming processes.  相似文献   

9.
Ceria-supported Pt, Ir and Co catalysts are prepared herein by the deposition–precipitation method and investigated for their suitability in the steam reforming of ethanol (SRE) at a temperature range of 250–500 °C. SRE is tested in a fixed-bed reactor under an H2O/EtOH molar ratio of 13 and 20,000 h−1 GHSV. Possible pathways are proposed according to the assigned temperature window to understand the different catalysts attributed to specific reaction pathways. The Pt/CeO2 catalyst shows the best carbon–carbon bond-breaking ability and the lowest complete ethanol conversion temperature of 300 °C. Acetone steam reforming over the Ir/CeO2 catalyst at 400 °C promotes a hydrogen yield of up to 5.3. Lower reaction temperatures for the water–gas shift and acetone steam reforming are in evidence for the Co/CeO2 catalyst, whereas the carbon deposition causes its deactivation at temperature over 500 °C.  相似文献   

10.
Steel slag, a waste from steelmaking plant, has been proven to be good candidate resources for low-cost calcium-based CO2 sorbent derivation. In this work, a cheap and sintering-resistance CaO-based sorbent (CaO (SS)) was prepared from low cost waste steel slag and was applied to enhance catalytic steam reforming of coke oven gas for production of high-purity hydrogen. This steel slag-derived CaO possessed a high and stable CO2 capture capacity of about 0.48 g CO2/g sorbent after 35 adsorption/desorption cycles, which was mainly ascribed to the mesoporous structure and the presence of MgO and Fe2O3. Product gas containing 95.8 vol% H2 and 1.4 vol% CO, with a CH4 conversion of 91.3% was achieved at 600 °C by steam reforming of COG enhanced by CaO (SS). Although high temperature was beneficial for methane conversion, CH4 conversion was remarkably increased at lower operation temperatures with the promotion effects from CaO (SS), and CO selectivity has been also greatly decreased. Reducing WHSV could increase methane conversion and reduce CO selectivity due to longer reactants residence time. Reducing C/A could increase methane conversion and hydrogen recovery factor, and also decrease CO selectivity. When being mixed with catalyst during SE-SRCOG, CaO (SS) with a uniform size distribution favored methane conversion due to the high utilization efficiency of catalyst. Promising stability of CaO (SS) in cyclic reforming/calcination tests was evidenced with a hydrogen recovery factor >2.1 and CH4 conversion of 82.5% at 600 °C after 10 cycles using CaO (SS) as sorbent.  相似文献   

11.
《Journal of power sources》2006,156(2):520-524
Because of the need for an efficient and inexpensive reforming catalyst, the objective of this work is to determine the feasibility of employing Mo2C catalyst for the steam reforming and oxy-steam reforming of the higher hydrocarbons typical of transportation fuels such as gasoline. It is shown that bulk Mo2C catalysts can successfully reform 2,2,4-trimethyl pentane (isooctane) to generate H2, CO and CO2 at very low steam/carbon ratios, without coke formation, eliminating the need for pre-reforming. Maximum hydrogen generation was observed at a S/C ratio of 1.3 and 1000 °C during SR reactions and S/C of 0.71, O2/C of 0.12 at 900 °C during oxidative steam reforming reactions.  相似文献   

12.
Sorption-enhanced ethanol steam reforming is an interesting alternative, to produce high purity H2. In this study, potassium promoted hydrotalcites are compared for sorption-enhanced ethanol steam reforming reaction under cyclic operation, performing sorbent regeneration at reaction temperature which is a great advantage to reduce process energy requirements. It is found that potassium promoted hydrotalcites have higher CO2 sorption capacity compared to unpromoted ones, due to the higher concentration of intermediate and strong basic sites. The hydrotalcite modified with 15 wt% potassium shows the best performance on multicyclic CO2 sorption-desorption (sorption capacity = 0.167 molCO2/kgsorbent). Therefore, there is an optimum loading of potassium, for which the opposite effects of reduction in surface area and enhanced basicity are balanced. Finally, potassium promoted hydrotalcites are tested under cyclical ethanol reforming process with simultaneous adsorption of CO2 followed by regeneration in N2 at reaction temperature (500 °C). At short reaction times (<5 min), H2 purities higher than 95% are achieved, with CO2 purities near 0%.  相似文献   

13.
Thermodynamic equilibrium of methanol steam reforming (MeOH SR) was studied by Gibbs free minimization for hydrogen production as a function of steam-to-carbon ratio (S/C = 0–10), reforming temperature (25–1000 °C), pressure (0.5–3 atm), and product species. The chemical species considered were methanol, water, hydrogen, carbon dioxide, carbon monoxide, carbon (graphite), methane, ethane, propane, i-butane, n-butane, ethanol, propanol, i-butanol, n-butanol, and dimethyl ether (DME). Coke-formed and coke-free regions were also determined as a function of S/C ratio.Based upon a compound basis set MeOH, CO2, CO, H2 and H2O, complete conversion of MeOH was attained at S/C = 1 when the temperature was higher than 200 °C at atmospheric pressure. The concentration and yield of hydrogen could be achieved at almost 75% on a dry basis and 100%, respectively. From the reforming efficiency, the operating condition was optimized for the temperature range of 100–225 °C, S/C range of 1.5–3, and pressure at 1 atm. The calculation indicated that the reforming condition required from sufficient CO concentration (<10 ppm) for polymer electrolyte fuel cell application is too severe for the existing catalysts (Tr = 50 °C and S/C = 4–5). Only methane and coke thermodynamically coexist with H2O, H2, CO, and CO2, while C2H6, C3H8, i-C4H10, n-C4H10, CH3OH, C2H5OH, C3H7OH, i-C4H9OH, n-C4H9OH, and C2H6O were suppressed at essentially zero. The temperatures for coke-free region decreased with increase in S/C ratios. The impact of pressure was negligible upon the complete conversion of MeOH.  相似文献   

14.
In this study, the continuous sorption-enhanced steam reforming of glycerol to high-purity hydrogen production by a simultaneous flow concept of catalyst and sorbent for reaction and regeneration using two moving-bed reactors has been evaluated experimentally. A Ni-based catalyst (NiO/NiAl2O4) and a lime sorbent (CaO) were used for glycerol steam reforming with and without in-situ CO2 removal at 500 °C and 600 °C. The simultaneous regeneration of catalyst and sorbent was carried out with the mixture gas of N2 and steam at 900 °C. The product gases were measured by a GC gas analyzer. It is obvious that the amounts of CO2, CO and CH4 were reduced in the sorption-enhanced steam reforming of glycerol, and the H2 concentration is greatly increased in the pre-CO2 breakthrough periods within 10 min both 500 °C and 600 °C. The extended time of operation for high-purity hydrogen production and CO2 capture was obtained by the continuous sorption-enhanced steam reforming of glycerol. High-purity H2 products of 93.9% and 96.1% were produced at 500 °C and 600 °C and very small amounts of CO2, CH4 and CO were formed. The decay in activity during the continuous reaction-regeneration of catalyst and sorbent was not observed.  相似文献   

15.
La0.8Ce0.2Mn0.6Ni0.4O3 with (LCMN@CuO) and without (LCMN) CuO addition are prepared by solution methods, followed by reduction in 5% H2–N2 stream at 650 °C to form Ni exsolved and CuO reduced catalysts, LCMN@Ni and LCMN@Ni/Cu, for ethanol (EtOH) steam reforming (ESR). The catalysts are characterized by X-ray diffraction (XRD), scanning and transmission electron microscopies (SEM and TEM), temperature programmed reduction (H2-TPR), X-ray photoelectron spectroscopy (XPS) and Raman spectroscopy etc., and are evaluated for ESR with a steam/carbon ratio of 3 and a weight hourly space velocity (WHSV) of 4 h−1 at temperatures between 500 and 700 °C. Ni exsolution and CuO reduction are confirmed on the substrates in LCMN@Ni and LCMN@Ni/Cu. Both the catalysts demonstrate a complete conversion of EtOH, forming mainly H2, CO2, CO and CH4. And increasing temperature to 700 °C increases the yields of H2 and CO to the levels about 90% and 40%, respectively, at the cost of CH4; and such performance remains unchanged for 30 h. These results indicate that both LCMN@Ni and LCMN@Ni/Cu are promising catalysts for ESR, the main difference between them is that the latter is more chemically stable and more resistant to carbon deposition under ESR conditions.  相似文献   

16.
Hydrogen production by steam reforming reaction of glycerol over Co/La/Ni-Al2O3 was studied in tubular fixed-bed reactor. The influences of operating parameters such as temperature, steam/carbon ratio, and weight hourly space velocity (WHSV) on hydrogen yield and carbon conversion were examined under atmospheric pressure. The results showed that carbon conversion increased with the increase of temperature and steam-to-carbon mole ratio (S/C). At 700°C, S/C=3:1, and WHSV=2.5h?1, hydrogen yield and potential hydrogen yield were up to 77.64% and 89.64%, respectively; meanwhile, the carbon conversion reached 96.36%.  相似文献   

17.
Thermodynamics equilibrium analysis of carbon dioxide reforming of methane combined with steam reforming to synthesis gas was studied by Gibbs free energy minimization method to understand the effects of process variables such as temperature, pressure and inlet CH4/H2O/CO2 ratios on product distributions. For this purpose, the calculations were carried out at total pressures of 1 and 20 bar, and at ranges of temperature and steam-to-carbon ratios of 200–1200 °C and 0–0.50, respectively. The results revealed that carbon dioxide reforming of methane combined with steam reforming process was controlled by different reactions with regard to the operating temperature, pressure and varying feed compositions. The H2/CO product ratio could be modified by changing the relative concentration of steam and CO2 in the feed, temperature and pressure, depending on the downstream application.  相似文献   

18.
To replace the traditional electric heating mode and increase methanol steam reforming reaction performance in hydrogen production, methanol catalytic combustion was proposed as heat-supply mode for methanol steam reforming microreactor. In this study, the methanol catalytic combustion microreactor and self-thermal methanol steam reforming microreactor for hydrogen production were developed. Furthermore, the catalytic combustion reaction supports with different structures were designed. It was found that the developed self-thermal methanol steam reforming microreactor had better reaction performance. Compared with A-type, the △Tmax of C-type porous reaction support was decreased by 24.4 °C under 1.3 mL/min methanol injection rate. Moreover, methanol conversion and H2 flow rate of the self-thermal methanol steam reforming microreactor with C-type porous reaction support were increased by 15.2% under 10 mL/h methanol-water mixture injection rate and 340 °C self-thermal temperature. Meanwhile, the CO selectivity was decreased by 4.1%. This work provides a new structural design of the self-thermal methanol steam reforming microreactor for hydrogen production for the fuel cell.  相似文献   

19.
Ce or Zr promoted CuZn/CNTs (carbon nanotubes) catalysts were synthesized by microwave-assisted polyol, co-precipitation and impregnation methods and were used to generate hydrogen by methanol steam reforming (MSR) process. The physico-chemical properties of the prepared catalysts were analyzed by BET, XRD, FT-IR, TEM, FE-SEM, EDX-dot mapping and H2-TPR methods. The effect of various operating parameters on methanol conversion and selectivity of gaseous products was investigated. The results indicated that the addition of 2 wt% CeO2 promoter on CuZn/CNTs catalyst synthesized by impregnation route (CuZn/CNTs (Imp)) increased its methanol conversion from 81.3 to 85.2%, and decreased its CO selectivity from 6.2 to 3.8% at 300 °C, WHSV of 7.5 h?1 and S/C molar ratio of 2. In addition, the CeCuZn/CNTs catalyst prepared via the microwave-assisted polyol route (CeCuZn/CNTs (Pol)) exhibited the best catalytic activity with 98.2% hydrogen selectivity, 2.6% CO selectivity and 94.2% methanol conversion at 300 °C. Furthermore, a 48 h continuous MSR reaction at 300 °C, identified CeCuZn/CNTs (Pol) as the most stable catalyst due to its higher metal particle dispersion and better interaction between the active phase and the CNTs support.  相似文献   

20.
Packed bed tube reactors are commonly used for hydrogen production in proton exchange membrane fuel cells. However, the hydrogen production capacity of methanol steam reforming (MSR) is greatly limited by the poor heat transfer of packed catalyst bed. The hydrogen production capacity of catalyst bed can be effectively improved by optimizing the temperature distribution of reactor. In this study, four types of reactors including concentric circle methanol steam reforming reactor (MSRC), continuous catalytic combustion methanol steam reforming reactor (MSRR), hierarchical catalytic combustion methanol steam reforming reactor (MSRP) and segmented catalytic combustion reactor with fins (MSRF) are designed, modeled, compared and validated by experimental data. It was found that the maximum temperature difference of MSRC, MSRR, MSRP and MSRF reached 72.4 K, 58.6 K, 19.8 K and 11.3 K, respectively. In addition, the surface temperature inhomogeneity Uf and CO concentration of the MSRF decreased by 69.8% and 30.7%, compared with MSRC. At the same reactor volume, MSRF can achieve higher methanol conversion rate, and its effective energy absorption rate is 4.6%, 3.9% and 2.6% higher than that of MSRC, MSRR and MSRP, respectively. The MSRF could effectively avoid the influence of uneven temperature distribution on MSR compared with the other designs. In order to further improve the performance of MSRF, the influences of methanol vapor molar ratio, inlet temperature, flow rate, catalyst particle size and catalyst bed porosity on MSR were also discussed in the optimal reactor structure (MSRF).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号