首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
The use of concentrated solar energy as the high-temperature heat source for the thermochemical gasification of biomass is a promising prospect for producing CO2-neutral chemical fuels (syngas). The solar process saves biomass resource because partial combustion of the feedstock is avoided, it increases the energy conversion efficiency because the calorific value of the feedstock is upgraded by the solar power input, and it also reduces the need for downstream gas cleaning and separation because the gas products are not contaminated by combustion by-products. A new concept of solar spouted bed reactor with continuous biomass injection was designed in order to enhance heat transfer in the reactor, to improve the gasification rates and gas yields by providing constant stirring of the particles, and to enable continuous operation. Thermal simulations of the prototype were performed to calculate temperature distributions and validate the reactor design at 1.5 kW scale. The reliable operation of the solar reactor based on this new design was also experimentally demonstrated under real solar irradiation using a parabolic dish concentrator. Wood particles were continuously gasified at temperatures ranging from 1100 °C to 1300 °C using either CO2 or steam as oxidizing agent. Carbon conversion rates over 94% and gas productions over 70 mmol/gbiomass were achieved. The energy contained in the biomass was upgraded thanks to the solar energy input by a factor of up to 1.21.  相似文献   

2.
The main objective of this paper is to study the effect of design and operating parameters, mainly reactor geometry, equivalence ratio and biomass feeding rate, on the performance of the gasification process of biomass in a three air stage continuous fixed bed downdraft reactor. The gasification of corn straw was carried out in the gasifier under atmospheric pressure, using air as gasifying agent. The results demonstrated that due to the three stage of air supply, a high and uniform temperature was achieved in the oxidation and reduction zones for better tar cracking. The designing of both the air supply system and rotating grate avoided bridging and channeling. The gas composition and tar yield were affected by the parameters including equivalence ratio (ER) and biomass feeding rate. When biomass feeding rate was 7.5 kg/h and ER was 0.25–0.27, the product gas of the gasifier attained a good condition with lower heating value (LHV) about 5400 kJ/m3 and cold gas efficiency about 65%. An increase in equivalence ratio led to higher temperature which in turn resulted in lower tar yield which was only 0.52 g/Nm3 at ER = 0.32. Increasing biomass feeding rate led to higher biomass consumption rate and process temperature. However, excessively high feeding rate was unbeneficial for biomass gasification cracking and reforming reactions, which led to a decrease in H2 and CO concentrations and an increase in tar yield. When ER was 0.27, with an increase of biomass feeding rate from 5.8 kg/h to 9.3 kg/h, the lower heating value decreased from 5455.5 kJ/Nm3 to 5253.2 kJ/Nm3 and tar yield increased from 0.82 g/Nm3 to 2.78 g/Nm3.  相似文献   

3.
In this paper, a combined power plant based on the dish collector and biomass gasifier has been designed to produce liquefied hydrogen and beneficial outputs. The proposed solar and biomass energy based combined power system consists of seven different subplants, such as solar power process, biomass gasification plant, gas turbine cycle, hydrogen generation and liquefaction system, Kalina cycle, organic Rankine cycle, and single-effect absorption plant with ejector. The main useful outputs from the combined plant include power, liquid hydrogen, heating-cooling, and hot water. To evaluate the efficiency of integrated solar energy plant, energetic and exergetic effectiveness of both the whole plant and the sub-plants are performed. For this solar and biomass gasification based combined plant, the generation rates for useful outputs covering the total electricity, cooling, heating and hydrogen, and hot water are obtained as nearly 3.9 MW, 6584 kW, 4206 kW, and 0.087 kg/s in the base design situations. The energy and exergy performances of the whole system are calculated as 51.93% and 47.14%. Also, the functional exergy of the whole system is calculated as 9.18% for the base working parameters. In addition to calculating thermodynamic efficiencies, a parametric plant is conducted to examine the impacts of reference temperature, solar radiation intensity, gasifier temperature, combustion temperature, compression ratio of Brayton cycle, inlet temperature of separator 2, organic Rankine cycle turbine and pump input temperature, and gas turbine input temperature on the combined plant performance.  相似文献   

4.
In the paper energy crops of considerable cultivation potential in Poland, namely: Salix viminalis, Helianthus tuberosus, Sida hermaphrodita, Spartina pectinata, Andropogon gerardi and Miscanthus X giganteus were tested in terms of steam gasification reactivity of biomass chars, as well as yields and composition of product gas in steam gasification and lime-enhanced steam gasification in a laboratory scale fixed bed reactor at 650 °, 700 ° and 800 °C.The highest value of reactivity for 50% of carbon conversion, R50, was observed for Sida hermaphrodita, regardless the process temperature.Application of CaO for in-situ CO2 capture in steam gasification of biomass chars resulted in hydrogen content increase at 650 °C to the levels comparable with the ones reached at 800 °C without carbonation reaction. Also hydrogen and total gas yields increased in tests of lime-enhanced gasification.  相似文献   

5.
Models of dimethyl ether (DME) and methanol synthesis plants have been designed by combining the features of the simulation tools DNA and Aspen Plus. The plants produce DME or methanol by catalytic conversion of a syngas generated by gasification of woody biomass. Electricity is co-produced in the plants by a gas engine utilizing the unconverted syngas. A two-stage gasifier with a cold gas efficiency of 93% is used, but because of the design of this type of gasifier, the plants have to be of small-scale (5 MWth biomass input). The plant models show energy efficiencies from biomass to DME/methanol + electricity of 51–58% (LHV), which shows to be 6-8%-points lower than efficiencies achievable on large-scale plants based on torrefied biomass pellets. By using waste heat from the plants for district heating, the total energy efficiencies become 87–88%.  相似文献   

6.
Rapeseed straws are recoverable lignocellulosic biomass for second generation bioethanol production. Therefore, a pretreatment step is recommended in order to increase accessibility of enzymes to sugars. As a pretreatment step in this study, several innovative technologies have been performed in order to investigate their efficiency for delignification and enzymatic hydrolysis purposes: microwaves (MW), high voltage electrical discharges (HVED) and ultrasounds (US). As a key processing parameter, different levels of energy input were studied MW (1832–7328 kJ/kg), US (916–3664 kJ/kg) and HVED (204–814 kJ/kg) corresponding to a treatment duration range of 10–40 min. Treatment temperature (60–90 °C) and medium alkalinity (0.125–0.5 M) impact was also investigated and optimized based on sugar and soluble lignin contents in black liquor, and lignin removal yields. Delignification yields increased from 28.3%, 28.6% and 31.2% for 10 min of treatment to 38.4%, 41.5% and 42.3% for 40 min of treatment, respectively for MW, US and HVED. However, in order to achieve the same efficiency the energy required by HVED is 9 times and 4.5 times less than that required by MW and US respectively. Treatment temperature also revealed to be important as sugars yields increased by 41.6% when temperature increased from 60 °C to 90 °C for HVED and the optimal medium alkalinity was found to be 0.3 M. Finally, better enzymatic hydrolysis yields were obtained and correlated to better delignification performances improving material accessibility.  相似文献   

7.
提出一种太阳能驱动生物质气化的动力多联产系统,利用聚光太阳能驱动生物质热化学气化反应,生成的合成气在合成反应单元中被转化为天然气,未反应的合成气直接用于联合循环系统发电。该文对系统进行热力学性能分析,探究了气化温度和水煤气转换单元对系统性能的影响。结果表明系统的一次能源效率为44.63%,产物中合成天然气和发电量之比为3.56。随着气化温度升高,系统的合成天然气产量和一次能源效率均减少;而水煤气转换单元有益于提高天然气的合成效率和系统的综合性能。  相似文献   

8.
The application of microalgal biomass for fermentation has been highlighted as a means of producing a range of value-added biofuels and chemicals. On the other hand, the microalgal residue from the fermentation process still contains as much as 50% organic contaminants, which can be a valuable substrate for further bioenergy recovery. In this study, a microbial fuel cell and automatic external load control by maximum power point tracking (MPPT) were implemented to harvest the electrical energy from waste fermented microalgal residue (FMR). The MFC with MPPT produced the highest amount of energy (1.82 kJ/L) compared to the other MFCs with fixed resistances: 0.98 (1000 Ω), 1.16 (500 Ω), and 1.17 kJ/L (300 Ω). The MFC with MPPT also showed the highest maximum power density (88.6 mW/m2) and COD removal efficiency (620.0 mg COD/L removal with 85% removal efficiency). The implementation of MPPT gained an approximate 12.9% energy yield compared to the previous fermentation stage. These results suggest that FMR can be an appropriate feedstock for electrical energy recovery using MFCs, and the combined fermentation and MFC system improves significantly the energy recovery and treatment efficiency from FMR.  相似文献   

9.
In order to efficiently utilize the biomass waste of algae bloom in Taihu Lake, China and improve energy conversion efficiency, a three-stage process comprising dark hydrogen fermentation with acid-domesticated hydrogenogens, photohydrogen fermentation, and methanogenesis was undertaken. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) analyses showed that algal cells pretreated by microwave heating with diluted acid were degraded into smaller fragments (<5 μm) than those pretreated by steam heating with diluted acid. The microwave pretreatment of algae resulted in higher saccharification efficiency. The domesticated hydrogenogens in presence of acids improved the dark hydrogen production from microwave-pretreated algae biomass and led to a total combined dark and photofermentation hydrogen yield of 283.4 mL/g-total volatile solid (TVS). The energy conversion efficiency of steam-pretreated algae biomass remarkably increased to 47.0% by cogenerating 256.7 mL/g-TVS hydrogen and 253.5 mL/g-TVS methane in the three-stage process: dark-fermentation, photofermentation, and methanogenesis.  相似文献   

10.
Biomass micron fuel (BMF) produced from feedstock (energy crops, agricultural wastes, forestry residues and so on) through an efficient crushing process is a kind of powdery biomass fuel with particle size of less than 250 μm. Based on the properties of BMF, a cyclone gasifier concept has been considered in our laboratory for biomass gasification. The concept combines and integrates partial oxidation, fast pyrolysis, gasification, and tar cracking, as well as a shift reaction, with the purpose of producing a high quality of gas. In this paper, characteristics of BMF air gasification were studied in the gasifier. Without outer heat energy input, the whole process is supplied with energy produced by partial combustion of BMF in the gasifier using a hypostoichiometric amount of air. The effects of equivalence ratio (ER) and biomass particle size on gasification temperature, gas composition, gas yield, low-heating value (LHV), carbon conversion and gasification efficiency were studied. The results showed that higher ER led to higher gasification temperature and contributed to high H2-content, but too high ER lowered fuel gas content and degraded fuel gas quality. A smaller particle was more favorable for higher gas yield, LHV, carbon conversion and gasification efficiency. And the BMF air gasification in the cyclone gasifier with the energy self-sufficiency is reliable.  相似文献   

11.
为有效评价生物质气化耦合燃煤锅炉系统能量转换过程,分析该系统的节能潜力,以某10 MW循环流化床生物质气化炉耦合大型超临界燃煤机组为例,建立了该耦合系统的火用分析控制体模型,利用Aspen plus平台对该系统实际运行过程进行火用平衡分析。结果表明:当前运行工况下,生物质气化过程火用损失是耦合系统最大的火用损失,达到42.28%,其次是可燃气体在燃煤锅炉内的燃烧及传热过程,为25.32%。因此系统运行过程中应采取优化运行措施,减小气化过程火用损失,同时气化炉应尽量与高参数的大型机组耦合运行,可燃气体选取在燃煤锅炉合适位置输入,以保证充分燃烧。  相似文献   

12.
Using Aspen Plus simulations, exergy analyses of hydrogen-rich syngas production via biomass staged-gasification are carried out for three configurations, namely, staged-gasification with pyrolysis gas combustion and char gasification (C-1), staged-gasification with pyrolysis gas reforming and char gasification (C-2), and staged-gasification with pyrolysis gas reforming and char combustion (C-3). The results show that, for the gasification and reforming processes, the exergy loss of pyrolysis gas with tar reforming is less than that of char gasification. As for the system, it is conducive to generating hydrogen by making full use of the hydrogen element (H) in biomass instead of the H in water. The benefits of C-1 are that it removes tar and produces higher yield and concentration of hydrogen. However, C-2 is capable of obtaining higher exergy efficiency and lower exergy loss per mole of H2 production. C-3 theoretically has greater process performances, but it has disadvantages in tar conversion in practical applications. The appropriate gasification temperature (TG) are in the range of 700–750 °C and the appropriate mass ratio of steam to biomass (S/B) are in the range of 0.6–0.8 for C-1 and C-3; the corresponding parameters for C-2 are in the ranges of 650–700 °C and 0.7–0.8, respectively.  相似文献   

13.
J.P. Reichling 《Energy》2011,36(11):6529-6535
Use of agricultural biomass (switchgrass, prairie grasses) through Fischer-Tropsch (FT) conversion to liquid fuels is compared with biomass utilization via (IGCC) integrated gasification combined cycle electrical production. In the IGCC scenario, biomass is co-fired with coal, with biomass comprising 10% of the fuel input by energy content. In this case, the displaced coal is processed via FT methods so that liquid fuels are produced in both scenarios. Overall performance of the two options is compared on the basis of total energy yield (electricity, liquid fuels), carbon dioxide emissions, and total cost. Total energy yield is almost identical whether biomass is used for electrical power generation or liquid fuels synthesis. Carbon dioxide emissions are also approximately equal for the two pathways. Capital costs are more difficult to compare since scaling factors cause considerable uncertainty. With IGCC costs roughly equivalent for either scenario, cost differences between the pathways appear based on FT plant construction cost. Coal FT facility capital cost estimates for the plant scale in this study (721 MWt LHV input) are estimated to be 410 (MUSD) million US Dollars while the similar scale biomass-only FT plant costs range from 430 MUSD to 590 MUSD.  相似文献   

14.
This paper presents the results from an experimental study on the energy conversion efficiency of producing hydrogen enriched syngas through uncatalyzed steam biomass gasification. Wood pellets were gasified using a 100 kWth fluidized bed gasifier at temperatures up to 850 °C. The syngas hydrogen concentration and cold gas efficiency were found to increase with both bed temperature and steam to biomass weight ratio, reaching a maximum of 51% and 124% respectively. The overall energy conversion to syngas (based on heating value) also increased with bed temperature but was inversely proportional to the steam to biomass ratio. The maximum energy conversion to syngas was found to be 68%. The conversion of energy to hydrogen (by heating value) increased with gasifier temperature and gas residence time, but was found to be independent of the S/B ratio. The maximum conversion of all energy sources to hydrogen was found to be 25%.  相似文献   

15.
A novel process, which integrated with biomass pyrolysis, gas–solid simultaneous gasification and catalytic reforming processes, was utilized to produce hydrogen. The effects of gasification temperature and reforming temperature on hydrogen yield and carbon conversion efficiency were investigated. The results showed that both higher gasification temperature and reforming temperature led to higher hydrogen yield and carbon conversion efficiency. Compared with the two-stage pyrolysis-catalytic reforming process, hydrogen yield and carbon conversion efficiency were greatly increased from 43.58 to 75.96 g H2/kg biomass and 66.18%–82.20% in the integrated process.  相似文献   

16.
Biomass gasification is an attractive process to produce high-value syngas. Utilization of concentrated solar energy as the heat source for driving reactions increases the energy conversion efficiency, saves biomass resource, and eliminates the needs for gas cleaning and separation. A high-temperature tubular solar reactor combining drop tube and packed bed concepts was used for continuous solar-driven gasification of biomass. This 1 kW reactor was experimentally tested with biomass feeding under real solar irradiation conditions at the focus of a 2 m-diameter parabolic solar concentrator. Experiments were conducted at temperatures ranging from 1000 °C to 1400 °C using wood composed of a mix of pine and spruce (bark included) as biomass feedstock. This biomass was used under its non-altered pristine form but also dried or torrefied. The aim of this study was to demonstrate the feasibility of syngas production in this reactor concept and to prove the reliability of continuous biomass gasification processing using solar energy. The study first consisted of a parametric study of the gasification conditions to obtain an optimal gas yield. The influence of temperature, oxidizing agent (H2O or CO2) or type of biomass feedstock on the product gas composition was investigated. The study then focused on solar gasification during continuous biomass particle injection for demonstrating the feasibility of a continuous process. Regarding the energy conversion efficiency of the lab scale reactor, energy upgrade factor of 1.21 and solar-to-fuel thermochemical efficiency up to 28% were achieved using wood heated up to 1400 °C.  相似文献   

17.
A novel integrated drying and gasification of microalgae wet biomass process, involving a chemical-looping combustion (CLC) option to supply energy, is developed using Aspen Plus. The integrated gasification system consists of four primary units, including (i) a wet biomass drying unit, (ii) the gasification system, (iii) the CLC section, and (iv) the gas purification process. The model shows a good accuracy (relative error < 10%) in predicting the product compositions as compared to the experimental results under consistent operating conditions. The performance of the integrated gasification system is evaluated using Spirulina microalgae at various moisture contents (0–45 wt%). The effect of gasifying agents O2/steam and the fraction of the produced char used in the CLC section on the gasification performance is also evaluated. The tar is successfully reformed into syngas in the pyrolysis stage by adjusting the O2 flow rate. The C (char) to CLC provides to a positive effect on the syngas composition, particularly for gasification of wet biomass, but brings an adverse impact on the yield of the syngas product. The integration of the CLC process and CO2 absorber in the gasification system provides high-quality syngas by removing CO2. The separated pure CO2 can be used as a feedstock for other chemical industries.  相似文献   

18.
The conceptual light olefin production system from biomass via gasification and methanol synthesis was simulated and its thermodynamic performance was evaluated through exergy analysis. The system was made up of gasification, gas composition adjustment, methanol synthesis, light olefin synthesis, steam & power generation and cooling water treatment. The in-depth exergy analysis was performed at the levels of system, subsystem and operation component respectively. The gasifier and the tail gas combustor were the main sources of irreversibility with exergy destruction ratios of 17.0% and 16.8% of the input exergy of biomass. The steam & power generation subsystem accounted for 43.4% of the overall exergy destruction, followed by 41.0% and 5.69% in the subsystems of gasification and gas composition adjustment respectively. The sensitivity evaluation of the operation parameters of gasifier indicates that the system efficiency could be improved by enhancing syngas yield and subsequent yield of light olefins. The overall exergetic efficiency of 30.5% is obtained at the mass ratios of steam to biomass and O2-rich gas (95 vol%) to biomass (S/B and O/B) of 0.26 and 0.14 and gasification temperature at 725 °C.  相似文献   

19.
Hydrogen production by biomass gasification using solar energy is a promising approach for overcoming the drawbacks of fossil fuel utilization, but the storage of discontinuous solar flux is a critical issue for continuous solar hydrogen production. A continuous hydrogen production system by biomass gasification in supercritical water using molten-salts-stored solar energy was proposed and constructed. A novel double tube helical heat exchanger was designed to be molten salts reactor for hydrogen production. Model compounds (glycerol/glucose) and real biomass (corn cob) were successfully gasified in this molten salts reactor for producing hydrogen-rich gas. The unique temperature profiles of biomass slurry in the reactor were observed and compared with that of conventional electrical heating and direct solar heating approaches. Product gases yield, gasification efficiency and exergy conversion efficiency of the reactor were analyzed. The results showed that the performances of reactor were determined by feedstock style, biomass concentration, residence time and biomass slurry temperature profiles.  相似文献   

20.
Methods to increase the conversion of char and tar in fluidized bed gasifiers (FBG) are discussed, with the focus on small to medium-size biomass/waste gasifiers for power production (from 0.5 to 10 MWe). Optimization of such systems aims at (i) maximizing energy utilization of the fuel (maximizing char conversion), (ii) minimizing secondary treatment of the gas (by avoiding complex tar cleaning), and (iii) application in small biomass-to-electricity gasification plants. The efficiency of various measures to increase tar and char conversion within a gasification reactor (primary methods) is discussed. The optimization of FBG by using in-bed catalysts, by addition of steam and enriched air as gasification agent, and by secondary-air injection, although improving the process, is shown to be insufficient to attain the gas purity required for burning the gas in an engine to produce electricity. Staged gasification is identified as the only method capable of reaching the targets mentioned above with reasonable simplicity and cost, so it is ideal for power production. A promising new stage gasification process is presented. It is based on three stages: FB devolatilization, non-catalytic air/steam reforming of the gas coming from the devolatilizer, and chemical filtering of the gas and gasification of the char in a moving bed supplied with the char generated in the devolatilizer. Design considerations and comparison with one-stage FBG are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号