首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Biomass gasification is a promising technology to produce renewable syngas used for energy and chemical applications. However, biomass gasification has challenges of low process energy efficiency, low syngas production with low H2/CO ratio and the sintering of biomass ash which limit the deployment of the technology. This work investigated the influence of in-situ generated heat from CaO–CO2 on cellulose CO2 gasification using a fixed bed reactor, thermogravimetric analysis-Fourier transform infrared spectroscopy (TGA-FTIR) and differential scanning calorimetry (DSC). Experimental results indicate an approximate 20 °C temperature difference in the fix-bed reactor between cellulose CO2 gasification with the energy compensation of CaO carbonation (denoted auto-thermal biomass gasification) and conventional CO2 gasification of cellulose after the power of external furnaces were turned off. Around 5 times H2/CO molar ratio is obtained after switching off the power in the auto-thermal biomass gasification compared with conventional gasification. The gas yield enhances significantly from 0.29 g g?1 cellulose to 0.56 g g?1 cellulose when CaO/cellulose mass ratio increases from 0 to 5. Furthermore, the TGA-FTIR results demonstrate the feasibility of adopting energy compensation of CaO carbonation to reduce the gasification temperature. DSC analysis also proves that the released heat from the CaO–CO2 reaction reduces the required energy for cellulose degradation.  相似文献   

2.
《能源学会志》2020,93(3):1074-1082
A dual loop gasification system (DLG) has been previously proposed to facilitate tar destruction and H2-rich gas production in steam gasification of biomass. To sustain the process auto-thermal, however, additional fuel with higher carbon content has to be supplied. Co-gasification of biomass in conjunction with coal is a preferred option. Herein, the heat balance of the steam co-gasification of pine sawdust and Shenmu bituminous coal in the DLG has been analyzed to verify the feasibility of the process with the help of Aspen Plus. Upon which, the co-gasification experiments in the DLG have been investigated with olivine as both solid heat carriers and in-situ tar destruction catalysts. The simulation results show that the self-heating of the DLG in the co-gasification is achieved at the coal blending ratio of 28%, gasification circulation ratio of 19 and reforming circulation ratio of 20 when the gasifier temperature 800 °C, reforming temperature 850 °C, combustor temperature 920 °C and S/C 1.1. The co-gasification experiments indicate that the tar is efficiently destructed in the DLG at the optimized reformer temperature and with olivine catalysts.  相似文献   

3.
Waste-to-fuel coupled with carbon capture and storage is forecasted to be an effective way to mitigate the greenhouse gas emissions, reduce the waste sent to landfill and, simultaneously, reduce the dependence of fossil fuels. This study evaluated the techno-economic feasibility of sorption enhanced gasification, which involves in-situ CO2 capture, and benchmarked it with the conventional steam gasification of municipal solid waste for H2 production. The impact of a gate fee and tax levied on the fossil CO2 emissions in economic feasibility was assessed. The results showed that the hydrogen production was enhanced in sorption enhanced gasification, that achieved an optimum H2 production efficiency of 48.7% (T = 650 °C and SBR = 1.8). This was 1.0% points higher than that of the conventional steam gasification (T = 900 °C and SBR = 1.2). However, the total efficiency, which accounts for H2 production and net power output, for sorption enhanced gasification was estimated to be 49.3% (T = 650 °C and SBR = 1.8). This was 4.4% points lower than the figure estimated for the conventional gasification (T = 900 °C and SBR = 1.2). The economic performance assessment showed that the sorption enhanced gasification will result in a significantly higher levelised cost of hydrogen (5.0 €/kg) compared to that estimated for conventional steam gasification (2.7 €/kg). The levelised cost of hydrogen can be reduced to 4.5 €/kg on an introduction of the gate fee of 40.0 €/tMSW. The cost of CO2 avoided was estimated to be 114.9 €/tCO2 (no gate fee and tax levied). However, this value can be reduced to 90.1 €/tCO2 with the introduction of an emission allowance price of 39.6 €/tCO2. Despite better environmental performance, the capital cost of sorption enhanced gasification needs to be reduced for this technology to become competitive with mature gasification technologies.  相似文献   

4.
The thermochemical conversion of biomass through its gasification has been widely explored during the last decades. The generated bio-syngas mixture can be directly used as fuel in thermal engines and fuel cells or as intermediate building block to produce synthetic liquid fuels and/or value added chemicals at large scales. In the present work, the effect of Greek olive kernel (OK) thermal treatment (torrefaction at 300 °C vs. slow pyrolysis at 500 and 800 °C) on the physicochemical characteristics and CO2 or H2O gasification performance of as-produced biochars is examined. Both the pristine OK sample and biochars (OK300, OK500, OK800) were fully characterized by employing a variety of physicochemical methods. The results clearly revealed the beneficial effect of thermal pretreatment on the gasification performance of as-prepared biochars. Α close relationship between the physicochemical properties of fuel samples and gas production was disclosed. Carbon dioxide gasification leads mainly to CO with minor amounts of H2 and CH4, whereas steam gasification results in a mixture containing CO2, CO, H2 and CH4 with a H2/CO ratio varied between 1.3 and 2.3. The optimum gasification performance was obtained for the slowly pyrolyzed samples (OK500 and OK800), due to their higher carbon and ash content as well as to their higher porosity and less ordered structure compared to pristine (OK) and torrefied (OK300) samples.  相似文献   

5.
Microalgae (N. chlorella) hydrothermal liquefaction (HTL) was conducted at 320 °C for 30 min to directly obtain original aqueous phase with a solvent-free separation method, and then the supercritical water gasification (SCWG) experiments of the aqueous phase were performed at 450 and 500 °C for 10 min with different catalysts (i.e., Pt-Pd/C, Ru/C, Pd/C, Na2CO3 and NaOH). The results show that increasing temperature from 450 to 500 °C could improve H2 yield and TGE (total gasification efficiency), CGE (carbon gasification efficiency), HGE (hydrogen gasification efficiency), TOC (total organic carbon) removal efficiency and tar removal efficiency. The catalytic activity order in improving the H2 yield was NaOH > Na2CO3 > None > Pd/C > Pt-Pd/C > Ru/C. Ru/C produced the highest CH4 mole fraction, TGE, CGE, TOC removal efficiency and tar removal efficiency, while NaOH led to the highest H2 mole fraction, H2 yield and HGE at 500 °C. Increasing temperature and adding proper catalyst could remarkably improve the SCWG process above, but some N-containing compounds were difficult to be gasified. This information is valuable for guiding the treatment of the aqueous phase derived from microalgae HTL.  相似文献   

6.
Massive amounts of waste tires are produced globally, which brings great challenges to the disposal and recycling of used tires. Hydrothermal gasification is a promising option for recycling waste tires. The hydrothermal gasification of waste tires was evaluated based on the chemical equilibrium analysis along with the response surface methodology (RSM) in terms of subcritical temperature range (250–300 °C), transition temperature range (350–400 °C), supercritical temperature range (550–600 °C), supercritical pressure (22.5–30.5 MPa) and feedstock concentration (5–20 wt%). CH4 yield at 350 °C reached a maximum, 41.575 mmol/g. H2 yield increased from 0.0283 to 53.602 mmol/g with increasing the temperature from 250 °C to 600 °C. CH4 yield at the supercritical temperature increased with lifting the feedstock concentration, while H2 yield decreased. The optimal parameters regarding maximum H2 and CH4 yields in the subcritical temperature range were 300 °C, 22.5 MPa and 12.5 wt%, respectively, while they in the supercritical temperature range were 550 °C, 30.5 MPa and 5.4 wt%, respectively. RSM was more suitable for predicting H2 yield in the hydrothermal gasification of waste tires at subcritical and supercritical temperature ranges, but it was available for predicting CH4 yield in three temperature ranges. This study can provide basic data for the hydrothermal treatment of waste tires.  相似文献   

7.
Integration of metals into the biomass matrix has been found to be an alternate strategy to the conventional catalysts that are prone to deactivation. Different metals like Ni (0.98 mol/kg), Ru (0.76 mol/kg) and Fe (0.83 mol/kg) are separately impregnated into banana pseudo-stem to analyse their impact on H2 yields. In-situ gasification of metal impregnated biomass was conducted over sub/- and supercritical water range of 300–600 °C, with 1:10 biomass-to-water ratio for 60 min. X-ray diffraction and X-ray photoelectron spectroscopy of char generated at 300 and 600 °C confirm the transition of nanometals from M(n+) to M(0) during in-situ gasification. The reduction of metal oxides to nanometals enhanced the gas yields by providing more active sites. Maximum H2 yields of 11.1, 8.83 and 8.04 mmol/g was achieved for metal (Ni/Ru/Fe) impregnated banana pseudo-stem with the carbon gasification efficiency approaching 73.64, 64.21 and 62.65% respectively at 600 °C.  相似文献   

8.
The reforming of hot gas generated from biomass gasification and high temperature gas filtration was studied in order to reach the goal of the CHRISGAS project: a 60% of synthesis gas (as x(H2)+ x(CO) on a N2 and dry basis) in the exit gas, which can be converted either into H2 or fuels. A Ni-MgAl2O4 commercial-like catalyst was tested downstream the gasification of clean wood made of saw dust, waste wood and miscanthus as herbaceous biomass. The effect of the temperature and contact time on the hydrocarbon conversion as well as the characterization of the used catalysts was studied. Low (<600 °C), medium (750°C–900 °C) and high temperature (900°C–1050 °C) tests were carried out in order to study, respectively, the tar cracking, the lowest operating reformer temperature for clean biomass, the methane conversion achievable as function of the temperature and the catalyst deactivation. The results demonstrate the possibility to produce an enriched syngas by the upgrading of the gasification stream of woody biomass with low sulphur content. However, for miscanthusthe development of catalysts with an enhanced resistance to sulphur poison will be the key point in the process development.  相似文献   

9.
A two-stage system involving alkaline thermal gasification of cellulose with Ca(OH)2 sorbent and catalytic reforming with Ni/Fe dual-functional CaO based catalysts is proposed and applied to enhance H2 production and in-situ CO2 capture. The results show that the H2 concentration is maximized at a considerably lower temperature (500 °C) than commercialized biomass gasification processes, reducing energy consumption. Sol-gel method is deemed better than impregnation method for its lower cost and higher-concentration H2 production. Among the prepared catalysts, sol-NiCa catalyst exhibits the best performance in CO2 absorption, resistance to carbon deposition, and cyclic stability, creating maximum H2 concentration (79.22 vol%), H2 yield (27.36 mmol g−1 cellulose), and H2 conversion (57.61%). Introduction of Ni rather than Fe on the CaO based catalyst promotes steam methane reforming at moderate temperature range of 400–600 °C, generating low contents of CH4 (5.38 vol%), CO2 (4.82 vol%), and CO (10.58 vol%).  相似文献   

10.
Compared with the conventional thermal drying process, hydrothermal carbonization (HTC) can reduce the energy cost of water removal from sewage sludge prior to its steam gasification. However, less attention is paid on the interactions between HTC and gasification. In this study, the thermodynamic evaluation on hydrochar gasification performance under different operating conditions including HTC duration (τ), HTC temperature (THTC), gasification temperature (Tg), and steam/hydrochar mass ratio (S/C ratio) is performed. Two indicators including carbon conversion rate (CC) and cold gas efficiency (CGE) are used to assess the gasification performance. The results show that elevating both gasification temperature and S/C ratio can enhance the H2 production, which also result in the increase of CC and CGE. The content and gasification activity of fixed carbon increase under moderate HTC duration and temperature, favoring the H2 formation despite of the apparent loss of volatiles species in the hydrochar. Longer HTC duration or higher HTC temperature declines the H2 production due to the sharp reduction of carboxyl and hydroxyl groups, weakening water gas reaction and on-site reforming reaction of tar occurred on the hydrochar surface. In terms of the values of CC = 93.9% and CGE = 64.38%, the optimum HTC conditions of τ = 30min and THTC = 200 °C can be determined. The data provided here favor guiding HTC treatment of sewage sludge targeting gasification and thus promoting the development of this promising waste-to-energy technology.  相似文献   

11.
Applicability of gulfweed as feedstock for a biomass-to-liquid (BTL) process was studied for both production of gas with high syngas (CO + H2) content via gasification of gulfweed and removal of gaseous impurities using char obtained in the gasification. Gulfweed as aqueous biomass was gasified with He/CO2/O2 using a downdraft fixed-bed gasifier at ambient pressure and 900 °C at equivalence ratios (ER) of 0.1–0.3. The syngas content increased while the conversion to gas on a carbon basis decreased with decreasing ER. At an ER of 0.1 and He/CO2/O2 = 0/85/15%, the syngas content was maximized at 67.6% and conversion to gas on a carbon basis was 94.2%. The behavior of the desulfurization using char obtained during the gasification process at ER = 0.1 and He/CO2/O2 = 0/85/15% was investigated using a downdraft fixed-bed reactor at 250–550 °C under 3 atmospheres (H2S/N2, COS/N2, and a mixture of gases composed of CO, CO2, H2, N2, CH4, H2S, COS, and steam). The char had a higher COS removal capacity at 350 °C than commercial activated carbon because (Ca,Mg)S crystals were formed during desulfurization. The char simultaneously removed H2S and COS from the mixture of gases at 450 °C more efficiently than did activated carbon. These results support this novel BTL process consisting of gasification of gulfweed with CO2/O2 and dry gas cleaning using self-supplied bed material.  相似文献   

12.
《能源学会志》2020,93(4):1419-1427
Sub- and supercritical water gasification is applied to recover energy from sewage sludge in a batch reactor. The effects of reaction temperature and water-soluble additives as catalysts on gasification were examined. The resultant products, including syngas, hydrochar and liquid residues were characterized. The rise of temperature without the presence of catalysts increased the yield of H2 (0.06 (350 °C) to 1.91 mol/kg (450 °C) and enhanced the gasification efficiency (1.29–19.61%), and decreased total organic carbon (TOC) by 68.50% in liquid residue. The changes in product distribution and characteristics of hydrochar and liquid residue implied that the organic matters in sewage sludge were dissolved and hydrolyzed in sub- and supercritical water, resulting in the production of syngas. The catalytic effect of different catalysts in relation to the H2 gas yield was in the following order: KOH > NaOH > Na2CO3 ≈ K2CO3. In the case of catalytic supercritical water gasification at 400 °C, the highest molar fraction (37.28%) and yield of H2 (1.60 mol/kg) were obtained in the presence of KOH. Furthermore, the scanning electron microscopy (SEM) analysis indicated that a conversion and dissolution of the organic matters in sewage sludge to liquid and gas, produced a porous, fragmented structure and disintegrated surface of hydrochar.  相似文献   

13.
《能源学会志》2020,93(4):1261-1270
The chemical looping gasification (CLG) of rice husk was conducted in a fixed bed reactor to analyze the effects of the ratio of oxygen carrier to rice husk (O/C), temperature, residence time and preparation methods of Fe-based oxygen carriers. The yield of gas, H2/CO, lower heating value of syngas (LHV), conversion efficiency and performance parameters were analyzed to obtain CLG reaction characterization and optimal reaction conditions. Results showed that when O/C increased from 0.5 to 3.0, the gas production, H2/CO, CO2 yield and carbon conversion efficiency gradually increased, while the yield of H2, CO and CH4 and LHV gradually decreased. At the same time, a highest gasification efficiency was obtained when O/C was 1.5. As increasing temperature, the gas production, CO yield, carbon conversion efficiency and gasification efficiency gradually increased, while the yield of H2, CH4 and CO2, H2/CO and LHV gradually decreased. Sintering and agglomeration was obvious when the temperature was higher than 850 °C. When the reaction time increased from 10 min to 60 min, the gas production, CO yield, carbon conversion efficiency and gasification efficiency gradually increased, but the yield of H2, H2/CO and LHV decreased, among which 30 min was the best reaction residence time. In addition, coprecipitation was the best preparation method among several preparation methods of oxygen carrier. Finally, O/C of 1.5, 800 °C, 30 min and coprecipitation preparation method of oxygen carrier were the optimal parameters to obtain a gasification efficiency of 26.88%, H2 content of 35.64%, syngas content of 56.40%, H2/CO ratio of 1.72 and LHV of 12.25 MJ/Nm3.  相似文献   

14.
In this study, a detailed steady-state equilibrium simulation model was designed using ASPEN Plus software to analyze and assess the efficiency of the groundnut shell biomass air gasification process. The developed model includes three general stages: biomass drying, pyrolysis, and gasification. The predicted results are quite similar to those found in the literature, which is consistent with simulation results being validated against experimental data. The effect of different operating parameters, like the gasification temperature, gasification pressure, and the equivalence ratio (ER), on the syngas composition and H2/CO ratio is investigated using sensitivity analysis. The findings of the sensitivity analysis revealed that raising the temperature preferred H2 and CO production, whereas increasing the pressure has favored CO2 and CH4 production. Increasing the ER value also boosted CO and CO2 yield. Moreover, in an effort to optimize the amount of H2 generated within the process, the sensitivity analysis was used to evaluate the simultaneous effect of operational parameters on the molar fraction of H2. To maximize H2 as a desired product, the following operating parameters were achieved: gasification temperature of 894 °C, gasification pressure of 1 bar, and ER of 0.05, resulting in an H2 molar fraction of 0.64.  相似文献   

15.
Chemical-Looping auto-thermal Reforming (CLRa) is a new process for hydrogen production from natural gas that uses the same principles as Chemical-Looping Combustion (CLC). The main difference with CLC is that the desired product is syngas (H2 + CO) instead of CO2 + H2O. For that, in the CLRa process the air-to-fuel ratio is kept low to prevent the complete oxidation of the fuel. The major advantage of this technology is that the heat needed for converting CH4 to syngas is supplied without costly oxygen production and without mixing of air with carbon containing fuel gases.An important aspect to be considered in the design of a CLRa system is the heat balance. In this work, mass and heat balances were done to determine the auto-thermal operating conditions that maximize H2 production in a CLRa system working with Ni-based oxygen-carriers. It was assumed that the product gas was in thermodynamic equilibrium at the exit of the air- and fuel-reactors and the equilibrium gas compositions were obtained by using the method of minimization of the Gibbs free energy of the system. It was found that to reach auto-thermal conditions the oxygen-to-methane molar ratio should be higher than 1.20, which means that the maximum H2 yield is about 2.75 mol H2/mol CH4. The best option to control the oxygen-to-methane molar ratio is to control the air flow fed to the air-reactor because a lower air excess is needed to reach auto-thermal conditions.  相似文献   

16.
This paper investigates the hot gas temperature effect on enhancing hydrogen generation and minimizing tar yield using zeolite and prepared Ni-based catalysts in rice straw gasification. Results obtained from this work have shown that increasing hot gas temperature and applying catalysts can enhance energy yield efficiency. When zeolite catalyst and hot gas temperature were adjusted from 250 °C to 400 °C, H2 and CO increased slightly from 7.31% to 14.57%–8.03% and 17.34%, respectively. The tar removal efficiency varies in the 70%–90% range. When the zeolite was replaced with prepared Ni-based catalysts and hot gas cleaning (HGC) operated at 250 °C, H2 contents were significantly increased from 6.63% to 12.24% resulting in decreasing the hydrocarbon (tar), and methane content. This implied that NiO could promote the water-gas shift reaction and CH4 reforming reaction. Under other conditions in which the hot gas temperature was 400 °C, deactivated effects on prepared Ni-based catalyst were observed for inhibiting syngas and tar reduction in the HGC system. The prepared Ni-based catalyst worked at 250 °C demonstrate higher stability, catalyst activity, and less coke decomposition in dry reforming. In summary, the optimum catalytic performance in syngas production and tar elimination was achieved when the catalytic temperature was 250 °C in the presence of prepared Ni-based catalysts, producing 5.92 MJ/kg of lower heating value (LHV) and 73.9% tar removal efficiency.  相似文献   

17.
This study aimed to investigate the gasification potential of municipal green waste in different fixed-bed gasifier configurations as updraft and downdraft. Both reactor systems were constructed from stainless-steel with a cyclone separator to increase synthesis gas yield and reduce tar production. Green waste collected from parks and gardens by Manisa Metropolitan Municipality, Turkey, was used in the experiments. After full-characterization of green waste, gasification experiments were performed above 700 °C to produce syngas with more than 40% (volumetric) H2 and heating value around 12.54 MJ/Nm3. Dry air (DA) and pure oxygen (PO) were used as gasification agents. DA was applied with the flow-rates ranged between 0.4 and 0.05 L/min while the flow-rate of PO was 0.01 L/min. The maximum H2 production as 45 vol% was obtained in downdraft reactor while it was about 51 vol% in updraft system. CH4 production was obtained as higher value (app. 19 vol%) in downdraft reactor than that (13 vol%) in the updraft one. In the experiments with DA above 700 °C, the H2/CO ratio varied between 1 and 3, and in the experiments with PO, it increased up to a maximum value of 4. The study has found a suitable set of gasification process parameters for two reactor systems. Therefore, the findings have been compared and discussed in detail.  相似文献   

18.
Hydrogen production from rice husk was carried out via a two-stage system combining CLG (calcium looping gasification) using Ca(OH)2 adsorbent in a bubbling fluidized bed and catalytic reforming with Ce–Ni/γAl2O3 catalyst in a connected fixed bed. The results show that the maximum H2 concentration (69.16 vol%) and H2 yield (11.86 mmol g−1rice husk) are achieved at Ca/C (Ca(OH)2 to carbon molar ratio) = 1.5, H2O/C (H2O to carbon molar ratio) = 1.5, Tg (gasification temperature) = 500 °C, Tc (catalytic temperature) = 800 °C. The supplementation of fresh Ca(OH)2 at Ca/C of 0.5 during calcination helps to activate the regenerated CaO by hydration, maintaining its carbonation activity and CO2 adsorption. Ce–Ni/γAl2O3 catalyst promotes water gas shift (WGS), steam methane reforming (SMR), and C2–C3 hydrocarbons reforming, also exhibits excellent activity stability to maintain H2 concentration and H2 yield above 67.21 vol% and 11.67 mmol g−1rice husk, respectively, during 5 lifetime tests.  相似文献   

19.
Supercritical water gasification (SCWG) was adopted to treat oilfield sludge and produce syngas. The effect of temperature (400–450 °C), reaction time (30–90 min) and catalyst addition on syngas production and residual products during SCWG of oilfield sludge was studied. When increasing SCWG temperature from 400 to 450 °C with reaction time of 60 min, the H2 yield and the selectivity of H2 increased significantly from 0.53 mol/kg and 75.53% to 0.98 mol/kg and 78.09%, respectively. It is noteworthy that when the reaction time was too long, CO2 and CO were converted to CH4 with the consumption of H2 via methanation reaction. The addition of Ni/Al2O3 catalyst can substantially promote the production of high-quality syngas from SCWG of oilfield sludge. The H2 yield and its selectivity at 450 °C and 60 min were as high as 1.37 mol/kg and 84.05% with 10Ni/Al catalyst. Moreover, the catalysts with bimetal loading (Fe–Ni, Rb–Ni or Ce–Ni) were found to be beneficial for improving gasification efficiency, H2 yield, and the degradation of organic compounds. Among them, 5 wt% Rb on 10Ni/Al catalyst performed the best catalytic activity for SCWG at 450 °C and 60 min, which had the highest H2 yield of 1.67 mol/kg and selectivity of 86.09%. More than 90% of total organic carbon in sludge was decomposed after the SCWG with all the catalysts. These findings indicated that catalytic SCWG is a promising alternative for efficiently dealing with oilfield sludge.  相似文献   

20.
This study aims to investigate the influence and interaction of experimental parameters on the production of optimum H2 and other gases (CO, CO2, and CH4) from gasification of municipal solid waste (MSW). Response surface method in assistance with the central composite design was employed to design the fifteen experiments to find the effect of three independent variables (i.e., temperature, equivalence ratio and residence time) on the yields of gases, char and tar. The optimum H2 production of 41.36 mol % (15.963 mol kg-MSW−1) was achieved at the conditions of 757.65 °C, 0.241, and 22.26 min for temperature, ER, and residence time respectively. In terms of syngas properties, the lower heating value and molar ratio (H2/CO) ranged between 9.33 and 12.48 MJ/Nm3 and 0.45–0.93. The predicted model of statistical analysis indicated a good fit with experimental data. The gasification of MSW utilizing air as a gasifying agent was found to be an effective approach to recover the qualitative and quantitate products (H2 and total gas yield) from the MSW.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号