首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This study discusses a novel process to increase the performance of proton exchange membrane fuel cells (PEMFC). In order to improve the electrical conductivity and reduce the surface indentation of the carbon fibers, we modified the carbon fibers with pitch-based carbon materials (mesophase pitch and coal tar pitch). Compared with the gas diffusion backing (GDB), GDB-A240 and GDB-MP have 32% and 33% higher current densities at 0.5 V, respectively. Self-made carbon paper with the addition of a micro-porous layer (MPL) (GDL-A240 and GDL-MP) show improved performance compared with GDB-A240 and GDB-MP. The current densities of GDL-A240 and GDL-MP at 0.5 V increased by 37% and 31% compared with GDL, respectively. This study combines these two effects (carbon film and MPL coating) to promote high current density in a PEMFC.  相似文献   

2.
Gas diffusion layers (GDLs) were fabricated using non-woven carbon paper as a macro-porous layer substrate developed by Hollingsworth & Vose Company. A commercially viable coating process was developed using wire rod for coating micro-porous layer by a single pass. The thickness as well as carbon loading in the micro-porous layer was controlled by selecting appropriate wire thickness of the wire rod. Slurry compositions with solid loading as high as 10 wt.% using nano-chain and nano-fiber type carbons were developed using dispersion agents to provide cohesive and homogenous micro-porous layer without any mud-cracking. The surface morphology, wetting characteristics and pore size distribution of the wire rod coated GDLs were examined using FESEM, Goniometer and Hg porosimetry, respectively. The GDLs were evaluated in single cell PEMFC under various operating conditions (temperature and RH) using hydrogen and air as reactants. It was observed that the wire rod coated micro-porous layer with 10 wt.% nano-fibrous carbon based GDLs showed the highest fuel cell performance at 85 °C using H2 and air at 50% RH, compared to all other compositions.  相似文献   

3.
Gas diffusion layer (GDL) is one of the most important components of fuel cells. In order to improve the fuel cell performance, GDL has developed from single layer to dual layers, and then to multiple layers. However, dual or multi layers in GDL are usually prepared by layer-by-layer methods, which cost too much time, energy, and resources. In this work, we successfully developed a facile one-step method to prepare a GDL with three functional layers by utilizing the different sedimentation rates and filtration rates of short carbon fiber (CF) and carbon nanotube (CNT). The treatment temperature for this GDL is much lower than that of traditional method. The thickness of the GDL can be effectively controlled from as thin as 50 μm to more than 200 μm by simply adjusting the content of CF. The GDL with high flexibility is suitable to develop high performance flexible electronics. The fuel cell with the GDL has the maximum power density 1021 mW cm?2, which shows 19% improvement comparing to the conventional one. Therefore, this work breaks the traditional concept that GDL for fuel cells only can be prepared by very complex and high-cost procedure.  相似文献   

4.
In gas diffusion layers (GDLs) of proton exchange membrane fuel cells (PEMFCs), effective permeability is a key parameter to be determined and engineered. In this study, through-plane (TP) and in-plane (IP) flow behaviors of GDLs are investigated analytically based on a scaling estimate method. The TP permeability and IP permeability of unidirectional fibers are determined first, based on that the minimum distance and the inscribed radius between fibers are adopted as the characteristic lengths for normal and parallel flows, respectively. The permeabilities of two-dimensional (2D) and three-dimensional (3D) GDLs are estimated by a proper mixture of the local TP and IP permeabilities of fiber alignments. The mechanistic model agrees closely with experimental and numerical results over a wide porosity range. With the new model, the influences of porosity and fiber orientation on flow behaviors are analyzed.  相似文献   

5.
Water transport through gas diffusion layer of proton exchange membrane fuels cells is investigated experimentally. A filtration cell is designed and the permeation threshold and the apparent water permeability of several carbon papers are investigated. Similar carbon paper with different thicknesses and different Teflon loadings are tested to study the effects of geometrical and surface properties on the water transport. Permeation threshold increases with both GDL thickness and Teflon loading. In addition, a hysteresis effect exists in GDLs and the permeation threshold reduces as the samples are retested. Moreover, several compressed GDLs are tested and the results show that compression does not affect the breakthrough pressure significantly. The measured values of apparent permeability indicate that the majority of pores in GDLs are not filled with water and the reactant access to the catalyst layer is not hindered.  相似文献   

6.
This paper studied the breakthrough pressure for liquid water to penetrate the gas diffusion layer (GDL) of a pro- ton exchange membrane fuel cell (PEMFC). An ex-situ testing was conducted on a transparent test cell to visu- alize the water droplet formation and detachment on the surface of different types of GDLs through a CCD cam- era. The breakthrough pressure, at which the liquid water penetrates the GDL and starts to form a droplet, was measured. The breakthrough pressure was found to be different for the GDLs with different porosities and thick- nesses. The equilibrium pressure, which is defined as the minimum pressure required maintaining a constant flow through the GDL, was also recorded. The equilibrium pressure was found to be much lower than the breakthrough pressure for the same type of GDL. A pore network model was modified to further study the relationship between the breakthrough pressure and the GDL properties and thicknesses. The breakthrough pressure increases for the thick GDL with smaller micro-pore size.  相似文献   

7.
A series of polyaniline nanofibers (PANFs) were synthesized and incorporated into gas diffusion electrodes (GDE) of proton exchange membrane fuel cells (PEMFC) to improve their performances at low relative humidity (RH) conditions. Three different placements to incorporate the PANFs in the anodes include (1) placing a PANFs layer between catalyst layer (CL) and membrane, (2) coating the CL with PANFs and catalyst mixed slurry, and (3) placing a PANFs layer between the CL and gas diffusion layer (GDL). Fuel cell performance data indicates that the last method is superior to the others and is adopted as incorporation method thereafter. Extensive studies on single cell performances have been conducted to compare the membrane electrode assemblies with and without the incorporation of PANFs in both anode and cathode. Polarization curves show the incorporation of H2SO4-doped PANFs is highly effective in improving the hydrophilic characteristic of the electrodes and thus can promote the PEMFC performance at low RH conditions. For example, with a lowering of reactant RH from 100 to 70%, the electrode with H2SO4-doped PANFs layer exhibits an increase in power density from 0.57 to 0.7 W cm−2. On the other hand, a traditional carbon-supported platinum electrode exhibits a decline of performance from 0.73 to 0.55 W cm−2.  相似文献   

8.
Liquid water within the cathode Gas Diffusion Layer (GDL) and Gas Channel (GC) of Proton Exchange Membrane Fuel Cells (PEMFCs) is strongly coupled to gas transport properties, thereby affecting the electrochemical conversion rates. In this study, the GDL and GC regions are utilized as the simulation domain, which differs from previous studies that only focused on any one of them. A Volume of Fluid (VOF) method is adopted to numerically investigate the two-phase flow (gas and liquid) behavior, e.g., water transport pattern evolution, water coverage ratio as well as local and total water saturation. To obtain GDL geometries, an in-house geometry-based method is developed for GDL reconstruction. Furthermore, to study the effect of GDL carbon fiber diameter, the same procedure is used to reconstruct three GDL structures by varying the carbon fiber diameter but keeping the porosity and geometric dimensions constant. The wall wettability is introduced with static contact angles at carbon fiber surfaces and channel walls. The results show that the GDL fiber microstructure has a significant impact on the two-phase flow patterns in the cathode field. Different stages of two-phase flow pattern evolution in both cathode domains are observed. The liquid water in the GDL experiences water invasion, spreading, and rising, followed by the droplet breakthrough in the GDL/GC interface. In the GC, the water droplets randomly experience accumulation, combination, attachment, and detachment. Due to the difference in surface wettability, the water coverage of the GDL/GC interface is smaller than that of the channel side and top walls. It is also found that the water saturation inside the GDL stabilizes after the water breakthrough, while local water saturation at the interface keeps irregular oscillations. Last but not the least, a water saturation balance requirement between the GDL and GC is observed. In terms of varying fiber diameter, a larger fiber diameter would result in less water saturation in the GDL but more water in the GC, in addition to faster water movement throughout the total domain.  相似文献   

9.
This communication described the fabrication of a hierarchy carbon paper, and its application to the gas diffusion layer (GDL) of proton exchange membrane (PEM) fuel cells. The carbon paper was fabricated by growing carbon nanotubes (CNTs) on carbon fibers via covalently assembling metal nanocatalysts. Surface morphology observation revealed a highly uniform distribution of hydrophobic materials within the carbon paper. The contact angle to water of this carbon paper was not only very large but also particularly even. Polarization measurements verified that the hierarchy carbon paper facilitated the self-humidifying of PEM fuel cells, which could be mainly attributed to its higher hydrophobic property as diagnosed by electrochemical impedance spectroscopy (EIS).  相似文献   

10.
This study concerns the use of conductive carbon material with different content and structure to produce carbon fiber paper for use in proton exchange membrane fuel cells, and investigates how changes in the content and structure of the conductive carbon material influence fuel cell performance.In this study, phenolic resin is used as a conductive carbon material, and is subjected to heat treatment at temperatures of 700 °C, 1000 °C, and 1400 °C, which changes its structure. Before carbon fiber paper is prepared from carbon felt, the felt is treated with phenolic resin solutions with resin content of 5, 10, 15, 20, 25, and 30 wt%. During fuel cell testing, torsion of 40, 60, 80, 100, and 120 kgf-cm is applied. The study found that when the phenolic resin content is 15 wt%, the heat treatment temperature 1400 °C, the test area 25 cm2, and the test temperature 65 °C, a fuel cell can achieve a current density of 2020 mA cm−2 at 0.5 V and torque of 120 kgf-cm.  相似文献   

11.
An effective ex-situ method for characterizing electrochemical durability of a gas diffusion layer (GDL) under simulated polymer electrolyte membrane fuel cell (PEMFC) conditions is reported in this article. Electrochemical oxidation of the GDLs are studied following potentiostatic treatments up to 96 h holding at potentials from 1.0 to 1.4 V (vs.SCE) in 0.5 mol L−1 H2SO4. From the analysis of morphology, resistance, gas permeability and contact angle, the characteristics of the fresh GDL and the oxidized GDLs are compared. It is found that the maximum power densities of the fuel cells with the oxidized GDLs hold at 1.2 and 1.4 V (vs.SCE) for 96 h decreased 178 and 486 mW cm−2, respectively. The electrochemical impedance spectra measured at 1500 mA cm−2 are also presented and they reveal that the ohmic resistance, charge-transfer and mass-transfer resistances of the fuel cell changed significantly due to corrosion at high potential.  相似文献   

12.
Gas diffusion layers (GDL) for proton exchange membrane fuel cell have been developed using a partially ordered graphitized nano-carbon chain (Pureblack® carbon) and carbon nano-fibers. The GDL samples’ characteristics such as, surface morphology, surface energy, bubble-point pressure and pore size distribution were characterized using electron microscope, inverse gas chromatograph, gas permeability and mercury porosimetry, respectively. Fuel cell performance of the GDLs was evaluated using single cell with hydrogen/air at ambient pressure, 70 °C and 100% RH. The GDLs with combination of vapor grown carbon nano-fibers with Pureblack carbon showed significant improvement in mechanical robustness as well as fuel cell performance. The micro-porous layer of the GDLs as seen under scanning electron microscope showed excellent surface morphology showing the reinforcement with nano-fibers and the surface homogeneity without any cracks.  相似文献   

13.
Gas diffusion electrodes for high-temperature PEMFC based on acid-doped polybenzimidazole membranes were prepared by a tape-casting method. The overall porosity of the electrodes was tailored in a range from 38% to 59% by introducing porogens into the supporting and/or catalyst layers. The investigated porogens include volatile ammonium oxalate, carbonate and acetate and acid-soluble zinc oxide, among which are ammonium oxalate and ZnO more effective in improving the overall electrode porosity. Effects of the electrode porosity on the fuel cell performance were investigated in terms of the cathodic limiting current density and minimum air stoichiometry, anodic limiting current and hydrogen utilization, as well as operations under different pressures and temperatures.  相似文献   

14.
A new analytical approach is proposed for evaluating the in-plane permeability of gas diffusion layers (GDLs) of proton exchange membrane fuel cells. In this approach, the microstructure of carbon papers is modeled as a combination of equally-sized, equally-spaced fibers parallel and perpendicular to the flow direction. The permeability of the carbon paper is then estimated by a blend of the permeability of the two groups. Several blending techniques are investigated to find an optimum blend through comparisons with experimental data for GDLs. The proposed model captures the trends of experimental data over the entire range of GDL porosity. In addition, a compact relationship is reported that predicts the in-plane permeability of GDL as a function of porosity and the fiber diameter. A blending technique is also successfully adopted to report a closed-form relationship for in-plane permeability of three-directional fibrous materials.  相似文献   

15.
The feasibility of using sintered stainless steel fiber felt (SSSFF) as gas diffusion layer (GDL) in proton exchange membrane fuel cells (PEMFCs) is evaluated in this study. The SSSFF is coated with an amorphous carbon (a-C) film by closed field unbalanced magnetron sputter ion plating (CFUBMSIP) to enhance the corrosion resistance and reduce the contact resistance. The characteristics of treated SSSFF, including microscopic morphology, mechanical properties, electrical conductivity, electrochemical behavior and wettablity characterization, are systematically investigated and summarized according to the requirements of GDL in PEMFC. A membrane electrode assembly (MEA) with a-C coated SSSFF-15 GDL is fabricated and assembled with a-C coated stainless steel bipolar plates in a single cell. The initial peak power density of the single cell is 877.8 mW cm−2 at a current density of 2324.9 mA cm−2. Lifetime test of the single cell over 200 h indicates that the a-C coating protects the SSSFF-15 GDL from corrosion and decreases the performance degradation from 30.6% to 6.3%. The results show that the SSSFF GDL, enjoying higher compressive modulus and ductility, is a promising solution to improve fluid permeability of GDL under compression and PEMFC durability.  相似文献   

16.
A three-dimensional, two-phase, non-isothermal model has been developed to explore the interaction between heat and water transport in proton exchange membrane fuel cells (PEMFCs). Water condensate produced from the electrochemical reaction may accumulate in the open pores of the gas diffusion layer (GDL) and retard the oxygen transport to the catalyst sites. This study predicts the enhancement of the water transport for linear porosity gradient in the cathode GDL of a PEMFC. An optimal porosity distribution was found based on a parametric study. Results show that a optimal linear porosity gradient with ?1 = 0.7 and ?2 = 0.3 for the parallel and z-serpentine channel design leads to a maximum increase in the limiting current density from 10,696 Am−2 to 13,136 Am−2 and 14,053 Am−2 to 16,616 Am−2 at 0.49 V, respectively. On the other hand, the oxygen usage also increases from 36% to 46% for the parallel channel design and from 55% to 67% for the z-serpentine channel design. The formation of a porosity gradient in the GDL enhances the capillary diffusivity, increases the electrical conductivity, and hence, benefits the oxygen transport throughout the GDL. The present study provides a theoretical support for existing reports that a GDL with a gradient porosity improves cell performance.  相似文献   

17.
The microporous layer (MPL) as a part of diffusion medium has an important impact on mass transfer of proton exchange membrane fuel cell (PEMFC). In this study, MPLs of gas diffusion layers (GDLs) are prepared with different carbon blacks, and the properties of carbon blacks and their effects as MPLs on cell performance are systematically investigated. The results show that the GDL prepared by Acetylene Black (ACET) exhibits the best performance with a maximum power density up to 2.05 W cm−2. Moreover, it still maintains extremely high performance with increasing current density even at humidity condition of 100% relative humidity, which means its excellent water/gas transportation capacity. This study contributes to deeply understanding the correlations between the properties of MPL material itself and their corresponding performance exhibited in cell. It also provides an important reference for enhancing cell performance and further advancing the practical applications of MPLs in PEMFC field.  相似文献   

18.
This study presents an analysis of water permeation of a polytetrafluoroethylene (PTFE)-coated gas diffusion layer (GDL) to determine the influence of hydrophobic treatment on the GDL for diagnosis of water flooding. It is found that the behaviour of water drainage is controlled by the pore configuration instead of the hydrophobicity in GDL. Better water drainage is achieved by the action of the Teflon coating in modulating the GDL pore configuration to give both a larger average pore size and a wider distribution of pore size. The results show that water penetration through the GDL must overcome a threshold surface tension defined by the largest pore range. A 30 wt.% PTFE coating of a GDL is shown to generate a satisfactory pore configuration, explaining the improved cell polarization performance with a lower driven pressure (∼1.91 kPa) and a higher rate of water drainage.  相似文献   

19.
The freezing characteristics of supercooled water in a gas diffusion layer (GDL), which are the bases for the cold start-up of proton exchange membrane fuel cells (PEMFCs), were investigated. An experimental apparatus for noncontact temperature measurement and observation systems was developed. GDL and GDL with a microporous layer (MPL) were prepared, and freezing experiments using a water-containing GDL under various cooling rates were performed with variations in polytetrafluoroethylene (PTFE) content and water saturation. Furthermore, based on the experimental results, the freezing initiation probability was theoretically investigated to elucidate the freezing characteristics. Results showed that, with increasing supercooling of water in GDL, the freezing probability of water increased abruptly. The effect of saturation showed a different trend depending on PTFE addition. For the GDL without PTFE, the freezing initiations occurred at approximately 6 °C of supercooling degree, and the probability approached 1.0 at approximately 9.5–11.5 °C, with saturation dependency. In contrast, for both GDL and GDL + MPL containing PTFE, the initiation temperature characteristics were relatively similar, which were approximately 8–12 °C, regardless of the saturation and PTFE content. In these cases, the ice-nucleating activity of water in the GDL was possibly stronger than that in the MPL.  相似文献   

20.
Fluid flow through the gas diffusion layer (GDL) of fuel cells is numerically studied using a pore network modeling approach. The model is developed based on an experimental visualization technique (fluorescence microscopy). The images obtained from this technique are analyzed to find patterns of flow inside the GDL samples with different hydrophobicity. Three different flow patterns are observed: initial invasion, progression, and pore-filling. The observation shows that liquid water flows into the majority of available pores on the boundary of the untreated GDL and several branches are segregated from the initial pathways. For the treated GDL, however, a handful of boundary pores are invaded and the original pathways extend toward the other side of the medium with minimum branching. The numerical model, developed based on an invasion percolation algorithm, is used to study the effects of GDL hydrophobicity and thickness on the flow configuration and breakthrough time as well as to determine the flow rate and saturation in different GDL samples. During the injection of water into the samples, it is numerically shown that the flow rates are monotonically decreasing for both treated and untreated samples. For the treated sample, however, the injection flow rate is constantly lower than that of the untreated sample, resulting in a lower overall water saturation at breakthrough. The numerical results also suggest that hydrophobic treatment of thick samples has minor effects on water management and overall performance. The developed model can be used to optimize the GDL properties for designing porous medium with effective transport characteristics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号