首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ni–Co–B hollow nanospheres were synthesized by the galvanic replacement reaction using a Co–B amorphous alloy and a NiCl2 solution as the template and additional reagent, respectively. The Ni–Co–B hollow nanospheres that were synthesized in 60 min (Ni–Co–B-60) showed the best catalytic activity at 303 K, with a hydrogen production rate of 6400 mLhydrogenmin?1gcatalyst?1 and activation energy of 33.1 kJ/mol for the NaBH4 hydrolysis reaction. The high catalytic activity was attributed to the high surface area of the hollow structure and the electronic effect. The transfer of an electron from B to Co resulted in higher electron density at Co sites. It was also found that Ni was dispersed on the Co–B alloy surface as result of the galvanic replacement reaction. This, in turn, facilitated an efficient hydrolysis reaction to enhance the hydrogen production rate. The parameters that influenced the hydrolysis of NaBH4 over Ni–Co–B hollow nanospheres (e.g., NaOH concentration, reaction temperature, and catalyst loading) were investigated. The reusability test results show that the catalyst is active, even after the fifth run. Thus, the Ni–Co–B hollow nanospheres are a practical material for the generation of hydrogen from chemical hydrides.  相似文献   

2.
A novel ploy(Enteromorpha-g-acrylic acid) p(EP-g-AA) hydrogel was synthesized and used as a template to prepare Cu and Ni nanoparticles. Then the hydrogel-metal nanoparticles (hydrogel-M (M: Cu, Ni)) were employed as catalyst in the generation of hydrogen from the hydrolysis of NaBH4. X-ray photoelectron spectroscopy (XPS), Fourier Transform infrared spectroscopy (FTIR), thermal gravimetric analysis (TGA), energy-dispersive X-ray spectrometer (EDS) and X-ray diffraction (XRD) were employed to determine the structure of p(EP-g-AA)-M (M: Cu, Ni) composite hydrogels. The effects of several parameters such as the amount of catalyst, initial concentration of NaBH4 and reaction temperature on the hydrolysis reaction were investigated. The kinetics of the hydrolysis reaction under different temperatures was also evaluated to determine the activation parameters. Experimental results showed that the catalytic efficiency of p(EP-g-AA)-Ni was much better than the catalytic efficiency of p(EP-g-AA)-Cu. And increasing the amount of catalyst and decreasing the NaBH4 concentration help to improve the reaction rate. Activation energy for the hydrolysis reaction was 42.61 kJ mol?1 catalyzed by p(EP-g-AA)-Cu and 39.10 kJ mol?1 by p(EP-g-AA)-Ni, respectively. At the end of five repetitive uses, p(EP-g-AA)-Cu composites possessed 64% activity and p(EP-g-AA)-Ni owned 70% activity. And after being stored for 30 days, p(EP-g-AA)-Cu and p(EP-g-AA)-Ni both remained 85% activity.  相似文献   

3.
In situ Co, Cu and Ni nanoparticles were synthesized by chemical reduction of the absorbed Co (II), Cu (II) and Ni (II) ions inside hydrogel networks prepared from 2-acrylamido-2-methyl-1-propansulfonic acid (AMPS) and were used as a catalyst system in the generation of hydrogen in hydrolysis of ammonia borane (AB). Several parameters affecting the hydrolysis reaction such as the type of the metal, the amount of catalyst, the initial concentration of AB, and temperature, were investigated. The activation energy values in the hydrolysis reaction of AB solution in the presence p(AMPS)-Co, p(AMPS)-Cu and p(AMPS)-Ni catalyst systems were calculated as Ea = 47.7 kJ mol−1, 48.8 kJ mol−1 and 52.8 kJ mol−1, respectively. Thus, the catalytic activity of the metal nanoparticles prepared inside the same hydrogel matrix was found to be Ni < Cu < Co.  相似文献   

4.
Highly dispersed Co–Ce–B nanoparticles supported on chitosan-derived carbon (Co–Ce–B/Chi–C) were synthesized through chemical reduction and carbonization. The morphology and microstructure of the Co–Ce–B/Chi–C nanocomposite were characterized by scanning electron microscopy, transmission electron microscopy, X-ray diffraction, and Brunauer–Emmett–Teller adsorption analysis. This nanocomposite had uniform morphology and large surface area, and it showed high catalytic activity for NaBH4 hydrolysis and good cycle stability. Compared with unsupported Co–Ce–B particles, this nanocomposite showed greatly increased catalytic activity for NaBH4 hydrolysis. A remarkably high hydrogen generation rate of 4760 mL?1 min?1 g?1 at 30 °C was achieved with low activation energy of 33.1 kJ mol?1. These results indicate that the Co–Ce–B/Chi–C nanocomposite is a promising catalyst for on-demand hydrogen generation via NaBH4 hydrolysis.  相似文献   

5.
Sodium borohydride exhibits great potential in the field of chemical hydrogen storage. A competent catalyst would accelerate its practical application for hydrogen utilization by enhance the efficiency of hydrogen generation from hydrolysis of sodium borohydride. Herein, a kind of highly efficient and durable synergistic Co–Ni bimetal inlaid carbon sphere catalyst (Co-NiΦC) was prepared by a co-pyrolysis method, of which the configuration of metal inlaid carbon sphere could effectively expose and anchor the active component by contrast with the capsule catalyst (Co–Ni@C) and supported catalyst (Co–Ni/C). Further, diverse cobalt-nickel contents of the Co-NiΦC catalysts were optimized to achieve the best hydrolysis performance of sodium borohydride. The structure-performance relationship of inlaid catalyst and the bimetallic synergistic mechanism were investigated by multiple characterization measurements and the density functional theory (DFT). As demonstrated, the inlaid Co-NiΦC-2 catalyst (Co/Ni molar ratio of 8/2) shows a promising catalytic activity of hydrogen generation rate up to 6364 mLH2·min?1·gmetal?1, a relative low reaction activation energy of 30.3 kJ/mol as well as robust durability where it still remains about 83.4% of its initial reaction rate after the fifth cycle. The outstanding performance of the optimized catalyst may ascribe to the high dispersion, remarkable Co–Ni synergy and high stabilization of the Co–Ni nanoparticles under the confinement effect of the inlaid metal-carbon sphere configuration. This work provides an alternative avenue for the application of efficient carbon-supported bimetal catalysts in the future.  相似文献   

6.
Cyclic life of catalyst for hydrolysis of sodium borohydride is one of the key issues, which hinder commercialization of hydrogen generation from sodium borohydride (NaBH4) solution. This paper is aimed at promoting the cyclic life of Ru/Ni foam catalysts by employing an electro-deposition method. The effect of hydrolysis parameters on hydrolysis of sodium borohydride was studied for improving the catalytic performance. It is found that the hydrogen generation rate (HGR) of the hydrolysis reaction catalyzed by Ru/Ni foam catalyst can reach as high as 23.03 L min?1 g?1 (Ru). The Ru/Ni foam catalyst shows good catalytic activity after a cycleability test of 100 cycles by rinsing with HCl, which is considered as more effective method than rinsing with water for recovering the performance of Ru/Ni foam catalyst.  相似文献   

7.
Thermocatalytic decomposition of CH4 is an interesting method for the production of hydrogen. In this article, the catalytic and structural properties of the La, Ce, Co, Fe, and Cu-promoted Ni/MgO·Al2O3 catalysts were investigated in the thermal decomposition of CH4. Mesoporous MgO·Al2O3 powder with the high BET area (>250 m2/g) was synthesized by a novel and simple sol–gel method. The different instrumental methods (XRD, BET, SEM, H2-TPR and TPO) were used for evaluating the physicochemical characteristics of the samples. The addition of Cu to Ni/MgO·Al2O3 dramatically improved the catalytic performance and the Cu-promoted catalysts exhibited the highest CH4 conversion and H2 yields among the promoted and unpromoted catalysts. The Cu-promoted catalyst possessed the highest stability in CH4 conversion during 10 h of reaction. The results also indicated that the Ni–Cu/MgO·Al2O3 catalyst with 15 wt.% Cu showed the highest catalytic activity and stability at higher temperatures (>80% CH4 conversion).  相似文献   

8.
Influence of using as catalysis, Ni-Schiff Base complex which we previously synthesized [1] used to support with amberzyme oxirane resin (A.O.R.) polymer for increasing the catalytic activity in NaBH4 hydrolysis reaction, to hydrogen generation was studied. The prepared catalyst was characterized by using SEM, XRD, BET, FT-IR analyze technique. Polymer supported Ni-Schiff Base complex catalyzed NaBH4 hydrolysis reaction was investigated depending on concentration of NaBH4, concentration of NaOH, temperature, percentage of Ni complex in total polymer supported Ni-Schiff Base complex and amount of catalyst factors. The maximum hydrogen production rate from hydrolysis of sodium borohydride with nickel-based complex catalyst compared to the pure nickel catalyst is increased from 772 mL H2·g?1 cat.·min?1 to 2240 mL H2 g?1 cat.·min?1 [1], and with supported amberzyme oxirane resin polymer this nickel based complex catalyst was increased to 13000 mL H2·g?1 cat.·min?1 at 30 °C. The activation energy of complex catalyzed NaBH4 hydrolysis reaction was found as 25.377 kJ/mol. This work also includes kinetic information for the hydrolysis of NaBH4.  相似文献   

9.
The fast release of hydrogen from borohydride is highly desired for a fuel cell system. However, the generation of hydrogen from borohydride is limited by the low activity and low stability of the catalyst. Herein, a highly active catalyst is synthesized through a simple one-step chemical reduction using bacterial cellulose (BC) derived carbon as a support for the active Co–B alloy. The morphology and microstructure of the BC/Co–B nanocomposite are characterized by SEM, TEM, XRD, and BET adsorption analysis. The BC/Co–B possesses high surface area (125.31 m2 g?1) high stability and excellent catalytic activity for the hydrolysis of NaBH4. Compared with unsupported Co–B nanocomposite or commercial carbon supported Co–B, the BC/Co–B nanocomposite shows greatly improved catalytic activity for the hydrolysis of NaBH4 with a high hydrogen generation rate of 3887.1 mL min?1 g?1 at 30 °C. An activation energy of 56.37 kJ mol?1 was achieved for the hydrolysis reaction. Furthermore, the BC/Co–B demonstrated excellent stability. These results indicate that the BC/Co–B nanocomposite is a promising candidate for the hydrolysis of borohydrides.  相似文献   

10.
In the present study, nanostructured Co–Ni–P catalysts have been successfully prepared on Cu sheet by electroless plating method. The morphologies of Co–Ni–P catalysts are composed of football-like, granular, mockstrawberry-like and shuttle-like shapes by tuning the depositional pH value. The as-deposited mockstrawberry-like Co–Ni–P catalyst exhibits an enhanced catalytic activity in the hydrolysis of NaBH4 solution. The hydrogen generation rate and activation energy are 2172.4 mL min−1 g−1 and 53.5 kJ mol−1, respectively. It can be inferred that the activity of catalysts is the result of the synergistic effects of the surface roughness, the particle size and microscopic architectures. Furthermore, the stability of mockstrawberry-like Co–Ni–P catalyst has been discussed, and the hydrogen generation rate remains about 81.4% of the initial value after 5 cycles.  相似文献   

11.
Exploration of multifunctional non-precious metal catalysts towards oxygen reduction reaction (ORR), oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) is very important for many clean energy technologies. Here, two trifunctional catalysts based on M (Co, Ni), N and S tridoped carbon nanoplates (Co/N/S-CNPs and Ni/N/S-CNPs) are reported. Due to the relatively higher catalytic site content, graphitization degree and smaller charge-transfer resistance, the Co/N/S-CNPs catalyst shows higher activity and stability for ORR (onset potential of 0.99 V and half-wave potential of 0.87 V vs. RHE (reversible hydrogen electrode)), OER (overpotential at 10 mA cm?2 of 0.37 V) and HER than the Ni/N/S-CNPs catalyst. Furthermore, when constructed with the Co/N/S-CNPs and commercial 20 wt% Pt/C + Ir/C cathodes, respectively, Zn-air battery (ZnAB) based on the Co/N/S-CNPs cathode displays better performance, including a higher power density of 96.0 mW cm?2 and cycling stability at 5 mA cm?2. In addition, an alkaline electrolyzer assembled with the Co/N/S-CNPs catalyst as a bifunctional catalyst can reach 10 mA cm?2 at 1.65 V for overall water splitting and maintain excellent stability even after cycling for 12 h. The present work proves the potential of the Co/N/S-CNPs catalyst for many clean energy devices.  相似文献   

12.
Porous Co–B nanoalloy is a low-cost and highly active catalyst towards the hydrolysis of sodium borohydride (NaBH4). In this study, a facile and room-temperature hydrogen bubble-assisted method was developed to prepare porous Co–B nanoalloy (Co-Bbubble) materials exhibiting high catalytic activity. The obtained materials are characterized by X-ray diffraction, scanning electron microscopy, energy-dispersive spectroscopy, X-ray photoelectron spectroscopy, inductively coupled plasma-optical emission spectrometer, transmission electron microscopy and surface area experiments. It is found that the hydrogen bubbles generated in-situ in the reaction system can act as template, which played an important role in determining the porous architecture of the final Co–B product. In the hydrolysis of sodium borohydride for hydrogen generation, the porous Co-Bbubble nanoalloy materials exhibit high catalytic activity with mass normalized rate constant of 5.31 Lhydrogen min?1 gcatalyst?1; a value which is much higher than those obtained for many other Co–B catalysts recently reported in the literature. The apparent activation energy (Ea) of the catalytic process is found to be ca. 30 kJ mol?1. It is proposed that the high catalytic performance and low cost of Co-Bbubble nanoalloy catalyst can be a promising material candidate in the hydrolysis of sodium borohydride for hydrogen production for commercial applications.  相似文献   

13.
Monometallic (Co) and bimetallic (Co-Ni and Co-Cu) oxides catalysts supported on the almond based activated carbon (AC) were prepared by the heterogeneous deposition-precipitation method. The activity of these catalysts was evaluated as a function of reaction temperature, NaOH, and NaBH4 concentration. Several analysis methods including XRD, XPS, FTIR, TEM, FESEM, ICP-OES, and BET were applied to characterize the structure of prepared samples. Well-dispersed supported bimetallic nano-catalysts with the size of particles below 20 nm were formed by using nickel and copper oxides as a promoter which was confirmed by XRD and TEM techniques. Surface composition of alloy and core-shell cobalt-nickel oxides catalysts was analyzed by ICP-OES which was in a good agreement with nominal content during catalyst preparation. The performance of bimetallic cobalt-nickel oxides catalysts indicated the synergic effect between cobalt and nickel in comparison with monometallic and bimetallic cobalt-copper samples for hydrogen production. Maximum hydrogen generation rate was measured for the supported core-shell catalyst as named Ni1/Co3/AC. The reaction rate increased with increasing the temperature of the alkaline solution as a significant parameter while other operating conditions were kept constant. The optimal values for NaOH and NaBH4 content were calculated to be 10 wt % for both variables at 30 °C. Hydrogen production rates were calculated to be 252.0, 310.8 and 658.8 mL min?1.g?1 by applying Co3/Ni1/AC, Co3-Ni1/AC (alloy) and Ni1/Co3/AC at 30 °C in 5 wt % NaBH4 and 5 wt % NaOH solutions, respectively. Obtained activation energy (50 kJ mol?1) illustrated that the suitable catalysts were synthesized for hydrogen generation. The experimental study showed that the hydrolysis of NaBH4 was a zero-order type reaction with the respect to the sodium borohydride concentration. A semi empirical kinetic model was derived at the various temperatures and NaOH concentrations.  相似文献   

14.
The effect of Ni/Co ratio on the catalytic performance of NiCo/ceramic foam catalyst for hydrogen production by steam reforming of real coal tar was studied. The NiCo/ceramic foam catalyst was synthesized by deposition-precipitation (DP) method and characterized with different methods. The experiments were conducted in a two-stage fixed-bed reactor. The results showed that the reducibility of the metallic oxides in bimetallic NiCo/ceramic foam catalysts was influenced obviously by the Ni/Co ratio.Both gas and hydrogen yield increased first and then decreased with the decline of Ni/Co ratio, and the highest hydrogen yield of 31.46 mmol g?1 was obtained when the Ni/Co ratio was 5/5. The lowest coke deposition of 0.34 wt% was generated at the same Ni/Co ratio. The lifetime test showed the catalyst maintained catalytic activity after 14 cycles (28 h), indicating the coal tar steam reforming on NiCo/ceramic foam catalyst is a promising method for hydrogen production.  相似文献   

15.
Highly porous p(2-hydroxyethyl methacrylate) p(HEMA) cryogels were synthesized via cryopolymerization technique and used as template for Co, Ni, and Cu nanoparticle preparation, then as composite catalyst systems in H2 generation from hydrolysis of both NaBH4 and NH3BH3. Due to their highly porous and open microstructures, p(HEMA)-Co cryogel composites showed very effective performances in H2 production from hydrolysis of both chemical hydrides. The characterization of p(HEMA) cryogels, and their metal composites was determined via various techniques including swelling experiments, digital camera images, SEM and TEM images, AAS and TGA measurements. The effect of various parameters on the hydrolysis reaction of NaBH4 such as metal types, concentration of chemical hydrides, amounts of catalyst, alkalinity of reaction medium and temperature were investigated in detail. It was found that Co nanoparticles are highly active catalysts in H2 generation reactions from both hydrides. The hydrogen generation rate (HGR) of p(HEMA)-Co was 1596 (mL H2) (min)−1 (g of Co)−1 which is quite good in comparison to reported values in the literature. Furthermore, kinetic parameters of p(HEMA)-Co metal composites such as energy, enthalpy and entropy were determined as Ea = 37.01 kJmol−1, ΔH# = 34.26 kJmol−1, ΔS# = −176,43 Jmol−1 K−1, respectively.  相似文献   

16.
CoB/ZIF-8 supported catalysts were successfully prepared using Co/Zn-ZIF-8 as the precursor by single-step reduction, which was applied in hydrogen release from the hydrolysis of NaBH4. Reducible Co ions of Co/Zn-ZIF-8 can be partially in-situ transformed into CoB by direct reduction, whereas ZIF-8 framework structure can be well preserved due to the resistance of Zn to reducing ambiences. Accordingly, CoB active components can be highly loaded onto ZIF-8 support to produce CoB/ZIF-8 catalysts. The texture evolution of Co/Zn-ZIF-8 during reduction was investigated by X-ray diffraction, scanning electron microscopy, transmission electron microscopy, X-ray photoelectron spectroscope and nitrogen adsorption–desorption isotherms. Compared with the reduction of Co-ZIF-67, the framework structure of Co/Zn-ZIF-8 can be effectively preserved although Co ions of Co/Zn-ZIF-8 were partially reduced into cobalt-based alloy. In the hydrogen release from hydrolysis of NaBH4, CoB/ZIF-8 supported catalyst exhibits excellent catalytic activity. The effect of NaOH concentration, NaBH4 concentration and reaction temperature on hydrolysis reaction of NaBH4 was deeply studied based on this catalyst. Compared with other published catalysts, this catalyst exhibits relatively low activation energy of about 57.72 kJ mol?1.  相似文献   

17.
Co–B has good catalytic activity in the hydrogenation reaction of unsaturated groups and has been widely studied and applied. Co–B catalysts were usually prepared by reducing cobalt salts with reducing agents. However, the high surface energy and magnetic properties of Co–B catalysts made the particles easily agglomerate. Then, agglomeration increased the particle size of the sample and reduced the effective surface area of the catalyst powder, which limited the catalytic activity of the Co–B catalysts. A new type of Co–B/copper nanowires/cetyl trimethyl ammonium bromide (Co–B/CuNWs/CTAB) catalyst with high catalytic activity was prepared by a chemical reduction in this work. The performance of Co–B/CuNWs/CTAB was studied in the hydrolysis of ammonia-borane (AB) and CuNWs inserted into the Co–B interlayer could avoid particle agglomeration, thereby effectively increasing the specific surface areas of the catalysts. Furthermore, the insertion of CuNWs facilitated the transportation of electrons and improved catalytic activity. The BET analysis shows that the maximum surface area of the sample is 148.9 m2/g. Meanwhile, the hydrogen generation rate of 13.46 L min?1·g?1 at 30 °C was obtained by using the synthesized Co–B/CuNWs/CTAB catalyst with a low activation energy of 8.771 kJ mol?1.  相似文献   

18.
The development of efficient and non-noble catalyst is of great significance to hydrogen generation techniques. Three surface-oxidized cobalt borides of Co–B–O@CoxB (x = 0.5, 1 and 2) have been synthesized that can functionalize as active catalysts in both alkaline water electrolysis and the hydrolysis of sodium borohydride (NaBH4) solution. It is discovered that oxidation layer and low boron content favor the oxygen evolution reaction (OER) activity of Co–B–O@CoxB in alkaline water electrolysis. And surface-oxidized cobalt boride with low boron content is more active toward hydrolysis of NaBH4 solution. An alkaline electrolyzer fabricated using the optimized electrodes of Co–B–O@CoB2/Ni as cathode and Co–B–O@Co2B/Ni as anode can deliver current density of 10 mA cm−2 at 1.54 V for overall water splitting with satisfactory stability. Meanwhile, Co–B–O@Co2B affords the highest hydrogen generation rate of 3.85 L min−1 g−1 for hydrolysis of NaBH4 at 25 °C.  相似文献   

19.
Ammonia borane (AB) has been identified as one of the most promising candidates for chemical hydrogen storage. However, the practical application of AB for hydrogen production is hindered by the need of efficient and inexpensive catalysts. For the first time, we report that the incorporation of Mo into Cu@Co core-shell structure can significantly improve the catalytic efficiency of hydrogen generation from the hydrolysis of AB. The Cu0.81@Mo0.09Co0.10 core-shell catalyst displays high catalytic activity towards the hydrolysis dehydrogenation of AB with a turnover frequency (TOF) value of 49.6 molH2 molcat?1 min?1, which is higher than most of Cu-based catalysts ever reported, and even comparable to those of noble-metal based catalysts. The excellent catalytic performance is attributed to the multi-elements co-deposition effect and electrons transfer effect of Cu, Mo and Co in the tri-metallic core-shell NPs.  相似文献   

20.
Metal ion-imprinted (IIH) poly(2-acrylamido-2-methyl-1-propansulfonic acid) p(AMPS) hydrogels were prepared by using a free-radical polymerization technique in the presence of metal ions (M = Co (II) or Ni (II)). Using metal ion-imprinted hydrogels (IIHs), and non-metal ion-imprinted (NIH) hydrogels as template for the preparation of Co and Ni catalyst systems, the hydrolysis kinetics of NaBH4 and NH3BH3 were investigated. The catalytic performances of IIHs and NIHs were compared in terms of effect on hydrolysis kinetics of NaBH4 and NH3BH3. To increase the amounts of Co nanoparticles within p(AMPS) hydrogel for better catalytic activity, several reloading and reduction cycles of Co (II) ions were carried out, and the prepared p(AMPS)-Co composite catalyst systems were tested for hydrogen generation from the hydrolysis of NaBH4. As the number of Co (II) loading and reduction cycles increased, the amount of metal catalysts and the catalytic performance of composites increased. Kinetics studies were carried out on three times Co (II) ion loaded and reduced p(AMPS)-Co catalyst systems (containing 36.80 mg/g Co). Three time Co (II)-loaded catalyst systems provided very fast hydrolysis kinetics for NaBH4, and provided magnetic field responsive behavior. The hydrolysis reaction of NaBH4 was completed within 50 s, under the described conditions at 60 °C. It was demonstrated that the synthesized catalyst systems can be used ten times repetitively without significant loss of catalytic activity (86.5%).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号