首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Offshore wind turbines supported on monopiles are an important source for renewable energy. Their fatigue life is governed by the environmental loads and in the dynamic behavior, depending on the support stiffness and thus soil‐structure interaction. The effects of scour on the short‐term and long‐term responses of the NREL 5‐MW wind turbine under operational conditions have been analyzed by using a finite element beam model with Winkler springs to model soil‐structure interaction. It was found that due to scour, the modal properties of the wind turbine do not change significantly. However, the maximum bending moment in the monopile increases, leading to a significant reduction in fatigue life. Backfilling the scour hole can recover the fatigue life, depending mostly on the depth after backfilling. An approximate fatigue analysis method is proposed, based on the full time‐domain analysis for 1 scour depth, predicting with good accuracy the fatigue life for different scour depths from the quasi‐static changes in the bending moment.  相似文献   

2.
Most existing and planned offshore wind turbines (OWTs) are located in shallow water where the possibility of breaking waves impacting the structure may influence design. Breaking waves and their associated impact loads are challenging to model because the breaking process is a strongly non‐linear phenomenon with significant statistical scattering. Given the challenges and uncertainty in modeling breaking waves, there is a need for comparing existing models with simultaneous environmental and structural measurements taken from utility‐scale OWTs exposed to breaking waves. Overall, such measurements are lacking; however, one exception is the Offshore Wind Turbines at Exposed Sites project, which recorded sea state conditions and associated structural loads for a 2.0 MW OWT supported by a monopile and located at the Blyth wind farm off the coast of England. Measurements were recorded over a 17 month campaign between 2001 and 2003, a period that included a storm that exposed the instrumented OWT to dozens of breaking waves. This paper uses the measurements from this campaign to categorize and identify breaking waves and quantify the variability of their impact loads. For this particular site and turbine, the distribution of measured mudline moments due to breaking waves has a mean of 8.7 MN‐m, a coefficient of variation of 26% and a maximum of 14.9 MN‐m. The accuracy of several breaking wave limits and impact force models is compared with the measurements, and the impact force models are shown to represent the measurements with varying accuracy and to be sensitive to modeling assumptions. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

3.
The calculation of loads for floating offshore wind turbines requires time‐domain integrated simulation tools where most of the physical concepts involved in the system dynamics are considered. The loads at the different components are used for the structural calculation and influence the design noticeably. This study quantifies the influence of mooring dynamic models on the calculation of fatigue and ultimate loads with integrated tools and compares its performance with a lower computational cost quasi‐static mooring model. Three platforms representing the principal topologies (spar, semisubmersible and tension‐leg platform) were assumed to be installed at the same 200 m depth location in the Irish coast. For each platform, the fatigue and ultimate loads were computed with an integrated floating wind turbine simulation code using both, a quasi‐static and a fully dynamic moorings model. More than 3500 simulations for each platform and mooring model were launched and post‐processed according to the IEC 61400‐3 guideline in an exercise similar to what a certification entity may require to an offshore wind turbine designer. The results showed that the impact of mooring dynamics in both fatigue and ultimate loads increases as elements located closer to the platform are evaluated; the blade and the shaft loads are only slightly modified by the mooring dynamics in all the platform designs; the tower base loads can be significantly affected depending on the platform concept; and the mooring lines tensions strongly depend on the lines dynamics, both in fatigue and extreme loads for all the platform concepts evaluated. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

4.
The ever increasing size of wind turbines poses a number of design issues for the industry, like increasing component mass and fatigue loads. An interesting concept for reducing fatigue loads is the implementation of spanwise distributed devices to control the aerodynamic loading along the span of the blade, thus mitigating fluctuations in loading and adding damping to the blade modes. This is usually referred to as the smart rotor concept. In the design of such a rotor, as compared to a traditional one, the integration of sensors and actuators poses additional design challenges. In the research discussed in this paper, a scaled smart rotor was designed and constructed to study its fatigue load reduction potential. A 1.8 m diameter rotor was manufactured and equipped with trailing‐edge flaps. The flaps were based on piezo electric Thunder actuators that allow for high‐frequent actuation. The dynamic strain behaviour of the blade was analysed for optimal placement of the sensors. Several sensors that record the strains and accelerations at different locations along the blade were implemented, but the controller was based on a piezo electric strain sensor. The rotor blades were mounted on a small turbine in the Delft University's Open Jet Facility wind tunnel and a mathematical state space model was obtained by using dedicated system identification techniques. Single‐Input Single‐Output, Multi‐Input Multi‐Output ?? feedback and feedforward controllers were designed, each focusing on different parts of the load spectrum. The rotor was tested at 0 and 5° yaw angles, with and without load control. A significant reduction of the dynamic loads was attained. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

5.
The dimensions of offshore wind turbine (OWT) support structures are governed by fatigue considerations. For 6‐ to 10‐MW OWTs, wave loads are often dominating in terms of fatigue utilization. The present work proposes a control scheme to reduce the wave‐induced fatigue loads in OWT support structures. The control scheme applies collective pitch control to increase both the damping and stiffness of the fore‐aft vibration modes. With conventional active tower damping, efficient wave disturbance rejection is restricted to a narrow frequency range around the first fore‐aft modal frequency. The proposed control scheme achieves efficient wave disturbance rejection across a broader frequency range. Here, tower feedback control is implemented via an auxiliary control loop. Based on a low‐fidelity model, the effect of the tower feedback loop on the stability margins of the basic controller is analysed. The results show that, within certain boundaries, the stability margins are improved by the stiffness term in the tower feedback loop. Consequently, the need to reduce the bandwidth of the basic controller to accommodate tower feedback control is relaxed. Based on time‐domain simulations carried out in an aero‐hydro‐servo‐elastic simulation tool, the lifetime effects of the proposed control scheme are analysed. Compared with conventional active tower damping, a more favourable trade‐off between adverse side effects and the support structure's fatigue damage is achieved with the proposed control scheme.  相似文献   

6.
S. Hallowell  A. T. Myers 《风能》2017,20(1):143-157
Much of the US offshore wind energy resource is located in shallow water off the Atlantic coast, which is exposed to both hurricanes and breaking waves. Current practice in offshore wind turbine (OWT) design is to realize a target structural reliability by amplifying loads using fixed load factors that do not vary with structural or site characteristics. Given that variability in both hurricane conditions and breaking waves is structure‐ and site‐specific, the structural reliability of OWTs may vary significantly from site to site if fixed load factors are used. To understand the implications of this situation, there is a need to compare the numerical values of fixed load factors with those calculated using methods that prescribe structure‐specific and site‐specific load amplification that reflects variability in long‐term conditions. In this paper, site‐specific load amplification is considered for four Atlantic coast locations and four water depths per location and then compared with fixed load factors commonly used in the design of OWTs. The study shows that decreasing water depth and increasing hurricane exposure tend to increase the required load amplification for consistent structural reliability. Another influential factor is the mean return period at which impact loads due to breaking waves begin to dominate the loading. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

7.
Serdar Soyoz  Can Aydin 《风能》2013,16(8):1277-1286
Offshore wind turbines (OWTs) are exposed to vibration‐induced forces throughout their operational lives that may cause a catastrophic failure unless resonance is avoided by proper stiffness design. The standard design procedure for the OWTs is such that the first structural frequency should be far away from the first wave frequency to eliminate resonance. In this study, a three‐bladed 5 MW monopile type OWT was first designed according to guidelines at a site located south of Massachusetts with a water depth of 25 m. Then, the effects of the higher wave harmonics on dynamic response of OWTs were investigated. Along this line, different combinations of structural and wave frequencies were considered, and it was found out that overturning moment, which is the most important design parameter, may increase as much as 45% as a result resonance of structure with higher wave harmonics (i.e., the second and third harmonics). Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

8.
Wake effects increase the fatigue loads on wind turbines in operation. However, the wake flow is considerably different from the traditional boundary layer flow, and poses many challenges in determining the fatigue loads on wind turbines operating in a wake. Therefore, in the present study, the actuator‐line model was adopted to numerically simulate the wake flow and an in‐house code named AOWT, which is based on a generalized coordinate method, was developed for analyzing the dynamics of wind turbines under an arbitrary distribution of the turbulent flow field varying in time and space. Using the numerically modeled instantaneous wake flow fields and AOWT, the dynamic response of a wind turbine, located at specified positions in both tandem and staggered arrangements in a wake, was examined, and the fatigue loads were determined. Furthermore, to determine the major contributions to the fatigue loads, the loads induced by the spatial variation of the mean flow fields were predicted. To the best of the authors' knowledge, no such analysis has been conducted thus far. Importantly, it was found that in the near‐wake region, the mean flow field had a significant influence on the fatigue loads, especially in the staggered layout. However, there is no analytical wake model available in the literature capable of predicting the near‐wake mean flow fields. Therefore, in this study, a near‐wake model was proposed, which yielded satisfactory predictions of the mean velocities in the near‐wake region.  相似文献   

9.
Tropical cyclones are a high risk to offshore wind turbine (OWT) support structures, so the design conditions, including this risk, are necessary for tropical cyclone frequent occurrence zones. This study developed a computer program to carry out a critical ultimate load analysis and determine the optimum design for a Jacket‐type OWT support structure. The total weight of the OWT support structure after the optimal steel design with the yaw operative condition is always considerably smaller than that without for the steel design results under the loads of the GL Tropical Cyclone Technical Note (GL TCTN). This paper studies OWTs under the tropical cyclone classes 1 to 3 and the terrain categories A, to C, where the 1‐minute wind speed at 10‐m height is gradually increased from classes 1 to 3, and the surface roughness decreases from A to C. When the yaw can operate, the total steel weight consumption due to the tropical cyclone 1C, 1B, and 2C loads is lower than that for the IEC 61400‐3 loads. In the case of 1A, the overall steel consumption is only slightly higher than that of the IEC 61400‐3. However, for other conditions, the design should include the GL TCTN loads. For the yaw inoperative condition, the GL TCTN results are always largely dominant in the steel design, so the use of only the IEC 61400‐3 condition will result in extremely high risk to OWT support structures.  相似文献   

10.
The aeroelastic response of wind turbines is often simulated in the time domain by using indicial response techniques. Unsteady aerodynamics in attached flow are usually based on Jones's approximation of the flat plate indicial response, although the response for finite‐thickness airfoils differs from the flat plate one. The indicial lift response of finite‐thickness airfoils is simulated with a panel code, and an empirical relation is outlined connecting the airfoil indicial response to its geometric characteristics. The effects of different indicial approximations are evaluated on a 2D profile undergoing harmonic pitching motion in the attached flow region; the resulting lift forces are compared with computational fluid dynamics (CFD) simulations. The relevance for aeroelastic simulations of a wind turbine is also evaluated, and the effects are quantified in terms of variations of equivalent fatigue loads, ultimate loads, and stability limits. The agreement with CFD computations of a 2D profile in harmonic motion is improved by the indicial function accounting for the finite‐thickness of the airfoil. Concerning the full wind turbine aeroelastic behavior, the differences between simulations on the basis of Jones's and finite‐thickness indicial response functions are rather small; Jones's flat‐plate approximation results in only slightly larger fatigue and ultimate loads, and lower stability limits. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

11.
We analyse high‐frequency wind velocity measurements from two test stations over a period of several years and at heights ranging from 60 to 200 m, with the objective to validate wind shear predictions as used in load simulations for wind turbine design. A validated wind shear model is thereby proposed for flat terrain and that can significantly decrease the uncertainty associated with fatigue load predictions for wind turbines with large rotors. An essential contribution is the conditioning of wind shear on the 90% quantile of wind turbulence, such that the appropriate magnitude of the design fatigue load is achieved. The proposed wind shear model based on the wind measurements is thereby probabilistic in definition, with shear jointly distributed with wind turbulence. A simplified model for the wind shear exponent is further derived from the full stochastic model. The fatigue loads over different turbine components are evaluated under the full wind measurements, using the developed wind shear model and with standard wind conditions prescribed in the IEC 61400‐1 ed. 3. The results display the effect of the Wöhler exponent and reveal that under moderate turbulence, the effect of wind shear is most pronounced on the blade flap loads. It is further shown that under moderate wind turbulence, the wind shear exponents may be over‐specified in the design standards, and a reduction of wind shear exponent based on the present measurements can contribute to reduced fatigue damage equivalent loads on turbine blades. Although the influence of wind shear on extreme loads was found to be negligible, the IEC 61400‐1 wind shear definition was found to result in non‐conservative estimates of the 50 year extreme blade deflection toward the tower, especially under extreme turbulence conditions. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

12.
The paper discusses the complexity of calibration of strain gage full bridges applied to measure mechanical loads in large wind turbines, when direct application of calibration loads is not feasible. In particular, at first, it presents a generalized static‐dynamic mechanical model which allows to calibrate the strain gage full bridges using its own unbalanced masses to generate known reference inputs. Then, the paper discusses the uncertainty associated to such a calibration, according to the ISO/IEC Guide 98‐3:2008 “Guide to the Expression of Uncertainty in Measurement”. The uncertainty of the reference input and the following calibration is discussed, which is often larger than the target set by the standard IEC‐61400‐13 used for wind turbine type certification. The paper comments on the attainable range of calibration which is rather limited with respect to expected load range in operation. Even if calibration should take place in isothermal effects, this is not always the case in real world practice. Therefore, the thermal effects on strain gage bridges are also discussed, putting into evidence its influence on calibration uncertainty both for full bridges in T configuration and in parallel configuration.  相似文献   

13.
The application of structural control to offshore wind turbines (OWTs) using tuned mass dampers (TMDs) has shown to be effective in reducing the system loads. The parameters of a magnetorheological (MR) damper modeled by the Bouc‐Wen model are modified to utilize it as a damping device of the TMD. Rather than showcasing the intricate design policy, this research focuses on the availability of the MR damper model on TMDs and its significance on structural control. The impact of passive and semiactive (S‐A) TMDs applied to both fixed bottom and floating OWTs is evaluated under the fatigue limit state (FLS) and the ultimate limit state (ULS). Different S‐A control logics based on the ground hook (GH) control policy are implemented, and the frequency response of each algorithm is investigated. It is shown that the performance of each algorithm varies according to the load conditions such as a normal operation and an extreme case. Fully coupled time domain simulations are conducted through a newly developed simulation tool, integrated into FASTv8. Compared with the passive TMD, it is shown that the S‐A TMD results in higher load reductions with smaller strokes under both the FLS and the ULS conditions. The S‐A TMD using displacement‐based GH control is capable of reducing the fore‐aft and side‐to‐side damage equivalent loads for the monopile by approximately 12% and 64%, respectively. The ultimate loadings at the tower base for the floating substructure are reduced by 9% with the S‐A TMD followed by inverse velocity‐based GH control (IVB‐GH).  相似文献   

14.
Operational modal analysis (OMA) is an essential tool for understanding the structural dynamics of offshore wind turbines (OWTs). However, the classical OMA algorithms require the excitation of the structure to be stationary white noise, which is often not the case for operational OWTs due to the presence of periodic excitation caused by rotor rotation. To address this issue, several solutions have been proposed in the literature, including the Kalman filter-based stochastic subspace identification (KF-SSI) method which eliminates harmonics through estimation and orthogonal projection. In this paper, an enhanced version of the KF-SSI method is presented that involves a concatenation step, allowing multiple datasets with similar environmental conditions to be used in the identification process, resulting in higher precision. This enhanced framework is applied to an operational OWT and compared to other OMA methods, such as the modified least-squares complex exponential and PolyMAX. Using field data from a multi-megawatt operational OWT, it is shown that the enhanced framework is able to accurately distinguish the first three bending modes with more stable estimates and lower variance compared to the original KF-SSI algorithm and follows a similar trend compared to other approaches.  相似文献   

15.
This article reports results from a European project, where site characteristics were incorporated into the design process of wind turbines, to enable site‐specific design. Two wind turbines of different concept were investigated at six different sites comprising normal flat terrain, offshore and complex terrain wind farms. Design tools based on numerical optimization and aeroelastic calculations were combined with a cost model to allow optimization for minimum cost of energy. Different scenarios were optimized ranging from modifications of selected individual components to the complete design of a new wind turbine. Both annual energy yield and design‐determining loads depended on site characteristics, and this represented a potential for site‐specific design. The maximum variation in annual energy yield was 37% and the maximum variation in blade root fatigue loads was 62%. Optimized site‐specific designs showed reductions in cost of energy by up to 15% achieved from an increase in annual energy yield and a reduction in manufacturing costs. The greatest benefits were found at sites with low mean wind speed and low turbulence. Site‐specific design was not able to offset the intrinsic economic advantage of high‐wind‐speed sites. It was not possible to design a single wind turbine for all wind climates investigated, since the differences in the design loads were too large. Multiple‐site wind turbines should be designed for generic wind conditions, which cover wind parameters encountered at flat terrain sites with a high mean wind speed. Site‐specific wind turbines should be designed for low‐mean‐wind‐speed sites and complex terrain. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

16.
The fast‐growing offshore wind energy sector brings opportunities to provide a sustainable energy resource but also challenges in offshore wind turbine (OWT) operation and maintenance management. Existing operational simulation models assume deterministic input reliability and failure cost data, whereas OWT reliability and failure costs vary depending on several factors, and it is often not possible to specify them with certainty. This paper focuses on modelling reliability and failure cost uncertainties and their impacts on OWT operational and economic performance. First, we present a probabilistic method for modelling reliability data uncertainty with a quantitative parameter estimation from available reliability data resources. Then, failure cost uncertainty is modelled using fuzzy logic that relates a component's failure cost to its capital cost and downtime. A time‐sequential Monte Carlo simulation is presented to simulate operational sequences of OWT components. This operation profile is later fed into a fuzzy cost assessment and coupled with a wind power curve model to evaluate OWT availability, energy production, operational expenditures and levelised cost of energy. A case study with different sets of reliability data is presented, and the results show that impacts of uncertainty on OWT performance are magnified in databases with low components' reliability. In addition, both reliability and cost uncertainties can contribute to more than 10% of the cost of energy variation. This research can provide practitioners with methods to handle data uncertainties in reliability and operational simulation of OWTs and help them to quantify the variability and dependence of wind power performance on data uncertainties.  相似文献   

17.
18.
The wind turbines within a wind farm impact each other's power production and loads through their wakes. Wake control strategies, aiming to reduce wake effects, receive increasing interest by both the research community and the industry. A number of recent simulation studies with high fidelity wake models indicate that wake mitigation control is a very promising concept for increasing the power production of a wind farm and/or reducing the fatigue loading on wind turbines' components. The purpose of this paper is to study the benefits of wake mitigation control in terms of lifetime power production and fatigue loading on several existing full‐scale commercial wind farms with different scale, layouts, and turbine sizes. For modeling the wake interactions, Energy Research Centre of the Netherlands' FarmFlow software is used: a 3D parabolized Navier‐Stokes code, including a k? turbulence model. In addition, an optimization approach is proposed that maximizes the lifetime power production, thereby incorporating the fatigue loads into the optimization criterion in terms of a lifetime extension factor.  相似文献   

19.
Accurate computer modelling is critical in achieving cost‐effective floating offshore wind turbine designs. Although a range of modelling fidelities are available for all parts of the simulation, a lower‐fidelity quasi‐static approach that neglects inertia and hydrodynamics is often used for the mooring line model. The loss of accuracy from using this approach has not been thoroughly studied across different support structure designs. To test the adequacy of this widely used simplified mooring line modelling approach, the floating wind turbine simulator FAST (National Renewable Energy Laboratory, Golden, Colorado) was modified to allow the use of a high‐fidelity dynamic mooring line model, ProteusDS (Dynamic Systems Analysis Inc. of Victoria, BC, Canada). Three standard floating wind turbine designs were implemented in this new simulator arrangement and tested using a set of steady and stochastic wind and wave conditions. The static equivalence between the built‐in quasi‐static mooring model and the dynamic mooring model is within 0.6% in terms of fairlead tension. Tests of the systems’ responses in still water indicate that the hydrodynamic damping of the mooring lines can constitute anywhere from 1% to 35% of the overall system damping in pitch, depending on the design. Tests in steady and stochastic operating conditions show that for very stable designs with slack moorings, or designs with taut moorings, a quasi‐static mooring model can in many conditions predict the platform motions and turbine loads with reasonable accuracy. For slack‐moored designs with larger platform motions, however, a quasi‐static model can lead to inaccuracies of as much as 30% in the damage‐equivalent and extreme loads on the turbine. An important observation is that even in situations where the platform response is predicted reasonably well by a quasi‐static model, larger inaccuracies can arise in the response of the rotor blades. These inaccuracies are more severe in the time series (with instantaneous discrepancies as high as 50% of the mean load) than in the corresponding damage‐equivalent and extreme loads calculated over multiple stochastic simulations. Consequently, differences in damage‐equivalent and extreme load metrics should be considered a floor to the measure of inaccuracy caused by a quasi‐static mooring model. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

20.
A novel approach is proposed to reduce, compared with the conventional binning approach, the large number of aeroelastic code evaluations that are necessary to obtain equivalent loads acting on wind turbines. These loads describe the effect of long‐term environmental variability on the fatigue loads of a horizontal‐axis wind turbine. In particular, Design Load Case 1.2, as standardized by IEC, is considered. The approach is based on numerical integration techniques and, more specifically, quadrature rules. The quadrature rule used in this work is a recently proposed “implicit” quadrature rule, which has the main advantage that it can be constructed directly using measurements of the environment. It is demonstrated that the proposed approach yields accurate estimations of the equivalent loads using a significantly reduced number of aeroelastic model evaluations (compared with binning). Moreover, the error introduced by the seeds (introduced by averaging over random wind fields and sea states) is incorporated in the quadrature framework, yielding an even further reduction in the number of aeroelastic code evaluations. The reduction in computational time is demonstrated by assessing the fatigue loads on the NREL 5 MW reference offshore wind turbine in conjunction with measurement data obtained at the North Sea, for both a simplified and a full load case.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号