首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A numerical analysis has been carried out to investigate the problem of MHD boundary‐layer flow and heat transfer of a viscous incompressible fluid over a moving vertical permeable stretching sheet with velocity and temperature slip boundary condition. A problem formulation is developed in the presence of radiation, viscous dissipation, and buoyancy force. A similarity transformation is used to reduce the governing boundary‐layer equations to coupled higher‐order nonlinear ordinary differential equations. These equations are solved numerically using the fourth‐order Runge–Kutta method along with shooting technique. The effects of the governing parameters such as Prandtl number, buoyancy parameter, slip parameter, magnetic parameter, Eckert Number, suction, and radiation parameter on the velocity and temperature profiles are discussed and shown by plotting graphs. It is found that the temperature is a decreasing function of the slip parameter ST. The results also indicate that the cooling rate of the sheet can be improved by increasing the buoyancy parameter. In addition the numerical results for the local skin friction coefficient and local Nusselt number are computed and presented in tabular form. The numerical results are compared and found to be in good agreement with previously published results on special cases of the problem. © 2013 Wiley Periodicals, Inc. Heat Trans Asian Res, 43(5): 412–426, 2014; Published online 3 October 2013 in Wiley Online Library ( wileyonlinelibrary.com/journal/htj ). DOI 10.1002/htj.21086  相似文献   

2.
An analysis has been carried out to investigate the effect of homogeneous‐heterogeneous reactions and induced magnetic field on the unsteady two‐dimensional incompressible nonlinear thermal convective velocity slip flow of a Jeffrey fluid in the presence of nonlinear thermal radiation and heat source/sink. We assumed that the flow is generated due to injection at the lower plate and suction at the upper plate. We obtained a numerical solution for the reduced nonlinear governing system of equations via the shooting technique with fourth‐order Runge‐Kutta integration. We plotted the graphs for various nondimensional parameters, like Deborah number, heat source/sink parameter, nonlinear convection parameter, nonlinear radiation parameter, magnetic Reynolds number, Strommer's number, velocity slip parameter, strengths of homogeneous, heterogeneous reaction parameters and skin friction over the nondimensional flow, temperature, concentration profiles and magnetic diffusivity fields. Also, we calculated the numerical values of boundary properties, such as the skin friction and heat transfer rate. We noticed that the temperature of the fluid is enhanced with the radiation parameter, whereas the concentration decreases with increase of the magnetic Reynolds number. The present results have good agreement with published work for the Newtonian case.  相似文献   

3.
This paper investigates the heat and mass transfer of an unsteady, magnetohydrodynamic incompressible water-based nanofluid (Cu and TiO2) flow over a stretching sheet in a transverse magnetic field with thermal radiation Soret effects in the presence of heat source and chemical reaction. The governing differential equations are transformed into a set of nonlinear ordinary differential equations and solved using a regular perturbation technique with appropriate boundary conditions for various physical parameters. The effects of different physical parameters on the dimensionless velocity, temperature, and concentration profiles are depicted graphically and analyzed in detail. Finally, numerical values of the physical quantities, such as the local skin-friction coefficient, the Nusselt number, and the Sherwood number, are presented in tabular form. It is concluded that the resultant velocity reduces with increasing Jeffrey parameter and magnetic field parameter. Results describe that the velocity and temperature diminish with enhancing the thermal radiation. Both velocity and concentration are enhanced with increases of the Soret parameter. Also, it is noticed that the solutal boundary layer thickness decreases with an increase in chemical reaction parameters. This is because chemical molecular diffusivity reduces for higher values of chemical reaction parameter. Also, water-based TiO2 nanofluids possess higher velocity than water-based Cu nanofluids. Comparisons with previously published work performed and the results are found to be in excellent agreement. This fluid flow model has several industrial applications in the field of chemical, polymer, medical science, and so forth.  相似文献   

4.
In this article, we performed the entropy generation of free convective chemically reacting second‐grade fluid confined between parallel plates in the influence of the Hall and Ion slip with heat and mass fluxes. Let there be a periodic suction/injection along with the plates, the governing flow field equations are reduced as a set of coupled nonlinear ordinary differential equations by using appropriate similarity transformations then solved numerically with shooting method based on Runge‐Kutta 4th order scheme. The results are analyzed for velocity in axial and radial directions, temperature distribution, concentration distribution, entropy generation number, Bejan number, mass and heat transfer rates with respect to distinct geometric, and fluid parameters and shown graphically and tables. It is observed that the entropy generation is enhanced with Prandtl number, whereas decreases with a second‐grade parameter, the effects of Hall and Ion slip parameters on velocity components, temperature and entropy generation number are the same. The entropy generation number the fluid is enhanced with the suction‐injection parameter whereas, the concentration of the fluid decreases with the increasing of chemical reaction parameter.  相似文献   

5.
A study of Soret–Dufour effects along with chemical reaction, viscous dissipation combining on MHD Joule heating for viscous incompressible flow is presented. It is assumed that fluid is flowing past an angled stretching sheet saturated in porous means. The slip conditions of velocity, concentration, and temperature are accounted for at the boundary. The mathematical expression of the problem contains highly nonlinear interconnected partial differential equations. To convert governing equations into ordinary differential equations, appropriate similarity transformations were utilized. These differential equations with boundary constraints are resolved by homotopy analysis method. Expression for velocity, concentration, and temperature are derived in the form of series. Effects of numerous physical parameters, for example, Schmidt number, Soret number, buoyancy ratio parameter, slip parameter, and so forth, on various flow characteristics are presented through graphs. Numerous values of velocity, concentration, and temperature gradient are tabulated against different parameters. Results show that the fluid velocity increases by enhancing the Soret number, Dufour number, or permeability parameter. The fluid's concentration rises as the Soret number increases, while it falls as the Dufour number, chemical reaction parameter, or permeability parameter increases.  相似文献   

6.
The present article describes the magnetohydrodynamic flow of a moving Jeffrey fluid along a convectively heated porous stretching surface with second-order velocity slip and radiation absorption effects. Furthermore, chemical reactions and viscous dissipation impacts are also taken into account. The governing equations are converted into dimensionless ordinary differential equations (ODEs) using appropriate similarity transformations. The highly nonlinear ODEs are solved numerically by employing a shooting technique based on the Runge–Kutta Cash–Karp formula. The figures are used to study the variations in temperature, velocity, and concentration profiles for several physical factors. The numerical values of the local skin friction, Sherwood number, and Nusselt number are explained and shown in tables. The analysis reveals that the velocity profile is enhanced for amplifying values of velocity ratio parameter and first-order velocity slip parameter. However, the temperature profile of Jeffrey nanofluid is highlighted w.r.t. Eckert number and radiation absorption parameter. This study may find significant applications in polymer production, food processing, instrumentation, combustion modeling, catalytic chemical reactors, and so on.  相似文献   

7.
Unsteady magnetohydrodynamic heat and mass transfer analysis of hybrid nanoliquid flow over a stretching surface with chemical reaction, suction, slip effects, and thermal radiation is analyzed in this study. A combination of alumina (Al2O3) and titanium oxide (TiO2) nanoparticles are taken as hybrid nanoparticles and water is considered as the basefluid. Using the similarity transformation method, the governing equations are changed into a system of ordinary differential equations. These equations together with boundary conditions are numerically evaluated by using the Finite element method. The influence of various pertinent parameters on the profiles of fluids concentration, temperature, and velocity is calculated and the outcomes are plotted through graphs. The values of nondimensional rates of heat transfer, mass transfer, and velocity are also analyzed and the results are depicted in tables. Temperature sketches of hybrid nanoliquid intensified in both the steady and unsteady cases as the volume fraction of both nanoparticles rises.  相似文献   

8.
In this study, a numerical solution of the velocity and heat transfer on the magnetohydrodynamic suction–injection model of viscous fluid flow has been studied. We use the differential transformation method and Bernoulli wavelet method to solve the highly nonlinear governing equations; applying appropriate similarity transformations and reducing governing equations to highly nonlinear coupled ordinary differential equations. The objective of this analysis is to determine how the suction parameter, Hartmann number, squeeze number, thermophoresis parameter, and Prandtl number affect the velocity and temperature profiles. When the current findings are compared with those that have already been published in the literature, confident suppositions are made, and it is discovered that there is considerable agreement. Graphs have been used to discuss the influence of nondimensional characteristics on velocity and temperature.  相似文献   

9.
The aim of the present paper is to investigate the Soret effect due to mixed convection on unsteady magnetohydrodynamics flow past a semi-infinite vertical permeable moving plate in the presence of thermal radiation, heat absorption, and homogenous chemical reaction subjected to variable suction. The plate is assumed to be embedded in a uniform porous medium and moves with a constant velocity in the flow direction in the presence of a transverse magnetic field. The equations governing the flow are transformed into a system of nonlinear ordinary differential equations by using the perturbation technique. Graphical results for the velocity distribution, temperature distribution, and concentration distribution based on the numerical solutions are presented and discussed. Also, the effects of various parameters on the skin-friction coefficient and the rate of heat transfer in the form of Nusselt number, and rate of mass transfer in the form of Sherwood number at the surface are discussed. Velocity distribution is observed to increase with an increase in Soret number and in the presence of permeability, whereas it shows reverse effects in the case of the aligned magnetic field, inclined parameter, heat absorption coefficient, magnetic parameter, radiation parameter, and chemical reaction parameter.  相似文献   

10.
The purpose of this study is to examine the magnetohydrodynamic mixed convection Casson fluid flow over an inclined flat plate along with the heat source/sink. The present flow problem is considered under the assumption of the chemical reaction and thermal radiation impacts along with heat and mass transport. The leading nonlinear partial differential equations of the flow problem were renovated into the nonlinear ordinary differential equations (ODEs) with the assistance of appropriate similarity transformations and then we solved these ODEs with the employment of the bvp4c technique using the computational software MATLAB. The consequences of numerous leading parameters such as thermophoretic parameter, local temperature Grashof number, solutal Grashof number, suction parameter, magnetic field parameter, Prandtl number, chemical reaction parameter, Dufour number, Soret number, angle of inclination, radiation parameter, heat source/sink, and Casson parameter on the fluid velocity, temperature, and concentration profiles are discoursed upon  and presented through different graphs. Some important key findings of the present investigation are that the temperature of the Casson fluid becomes lower for local temperature Grashof number and solutal Grashof number. It is initiated that the Casson fluid parameter increases the velocity of the fluid whereas the opposite effect is noticed in the temperature profile. Higher estimation of Prandtl number and magnetic parameter elevated the Casson fluid concentration. Finally, the skin friction coefficient, Nusselt number, and Sherwood number are calculated and tabulated. It is also examined that the Nusselt number is weakened for both the Dufour number and Soret number but the skin fraction coefficient is greater for both the Dufour number and Soret number.  相似文献   

11.
In this article, we investigate the heat transfer characteristics of a Maxwell nanofluid along a stretching sheet with transverse magnetic field, considering the presence of heat source/sink and chemical reaction. We consider appropriate similarity transformation for transforming the governing nonlinear equations into nondimensional highly nonlinear coupled ordinary differential equations. The optimal homotopy analysis method is utilized for solving the resultant-coupled equations. The impact of all sundry parameters, like, Deborah number, Prandtl number, magnetic parameter, thermophoresis, rotation parameter, chemical reaction, velocity slip, Schmidt number, Brownian motion parameter, heat sources per sink, Biot number, and Eckert number, on the temperature, velocity, and concentration fields is reported, analyzed, and described through graphs and tables. It is noticed that higher values of magnetic parameter and Deborah number reduce the horizontal velocity field. Furthermore, it is observed that the Biot number and heat source/sink parameter enhance the temperature distribution.  相似文献   

12.
We have presented a comparison between steady and unsteady magnetohydrodynamic boundary layer flow, heat transfer features of Au–kerosene‐based nanoliquid over a stretching surface by taking variable viscosity, variable thermal conductivity, and slip boundary conditions in this study. Appropriate similarity translations are engaged to reduce nonlinear partial differential equations into a set of ordinary differential equations. These equations along with boundary conditions are elucidated numerically by finite‐element technique. Influence of several pertinent parameters on velocity, temperature, and concentration scatterings, in addition to that, the values of Nusselt number, skin‐friction coefficient, and Sherwood number are scrutinized in detail and the outcomes are exhibited through plots and tables. It is perceived that the values of Nusselt number, skin‐friction coefficient, and Sherwood number intensify in both steady–unsteady cases as the values of volume fraction parameter ( ? ) rise.  相似文献   

13.
This article presents the magnetohydrodynamic boundary layer flow, heat and mass transfer characteristics of a nanofluid over an inclined porous vertical plate with thermal radiation and chemical reaction. The new enhanced concentration boundary condition on the surface of the wall is considered in this analysis. The governing nonlinear partial differential equations are transformed into a system of nonlinear ordinary differential equations using the similarity variables and are solved numerically using the finite element method. The effect of key parameters such as magnetic parameter (M), buoyancy ratio (Nr), Prandtl number (Pr), thermal radiation (R), Brownian motion (Nb), thermophoresis (Nt), Lewis number (Le), and chemical reaction parameter (Cr) on velocity, temperature, and concentration distributions is discussed in detail and the results are shown graphically. Furthermore, the impact of these parameters on skin‐friction coefficient, Nusselt number, and Sherwood number is also investigated and the results are shown in tabular form. The developed algorithm is validated with works published previously and was found to be in good agreement. The thermal boundary layer thickness is elevated, whereas the solutal boundary layer thickness retards with the improving values of the Brownian motion parameter (Nb). The rates of nondimensional temperature and concentration both decelerate with higher values of the thermophoresis parameter (Nt).  相似文献   

14.
The current study aims to investigate the influence of porosity in the presence of radiation, and viscous dissipation on two-dimensional unsteady magnetohydrodynamics mixed convection heat and mass transfer flow at the stagnation point. The governing time-dependent nonlinear partial differential equations are converted into a nonlinear ordinary differential equation by utilizing similarity transformations. The transformed equations are solved by employing the bvp4c technique, a well-known numerical approach. The influence of nondimensional factors on fluid velocity, temperature, and species concentration profiles is explored and graphically represented. For varied values of the Prandtl number, magnetic field, and Schmidt number, the friction factor, Nusselt, and Sherwood numbers are also explored and provided in tabular format. As increasing the porosity parameter, the temperature profile, concentration profile is growing, and velocity profile diminishes. The conclusions of this study are widely accepted by the scientific community.  相似文献   

15.
The problem of an unsteady magnetohydrodynamic stagnation point flow of an incompressible viscous fluid over a shrinking sheet is discussed in the presence of thermal radiation and boundary slip, which has not been documented to date in the literature. The governing boundary‐layer equations are transformed to high order nonlinear and ordinary differential equations by similarity transformations and then solved numerically. The effects of magnetic parameter, unsteadiness parameter, radiation parameter, velocity, and thermal slip parameters on velocity and temperature are analyzed and discussed. It is found that dual solutions of both velocity and temperature fields exist for negative values of the velocity ratio parameter. The results indicate that dual solution domains of velocity and temperature expand as the unsteadiness parameter increases.  相似文献   

16.
In this present study, we have investigated the entropy generation analysis and Dufour and Soret impacts on unsteady incompressible free convective radiative MHD Eyring–Powell fluid flow between parallel plates with periodic injection and suction. The governing PDEs are converted into nondimensional coupled nonlinear ordinary differential equations by using similarity variables then numerically solved by Runge–Kutta fourth-order scheme with shooting technique. The results are discussed in detail for different flow, mass, and heat transfer profiles corresponding to various active parameters and presented in tables and graphs. Also, it is noticed that the temperature profiles are enhanced with the fluid parameter, whereas the concentration profiles are decreased with the Prandtl number. The validations of present results with the existing outcomes for the viscous case of skin friction are included and have found to be in good agreement. The present numerical study is useful for the enhancement of heat transfer in various industrial and chemical processes.  相似文献   

17.
The consequences of chemical reaction, on unsteady magnetohydrodynamic heat and mass transport laminar flows of a viscous, electrically conducting with heat-generating or absorbing fluid enclosed through a semi-infinite absorbent plate has been premeditated. The plate is assumed to be in motion with a constant velocity within the path of fluid flow. A homogeneous magnetic field performs at right angles to the absorbent surface; it is absorbing the fluid with a suction velocity varying with a certain instant of time. The nondimensional governing equations for the present configuration are solved systematically utilizing harmonic and nonharmonic terms. Graphical consequences for the velocity, temperature, and concentration profiles together supported by the investigative solutions are displayed and discussed computationally. The resulting velocity is reducing by an augment in the strength of the magnetic field and Prandtl number, whereas it is enhancing by growing in the permeability of the porous medium. The temperature delivery is reduces by an escalating heat source parameter and occurrence of fluctuation. It is significant to note that the temperature increases notably with growing the radiation absorption parameter. The influences of the chemical reaction and Schmidt number reduced the concentration in the entire fluid medium.  相似文献   

18.
This investigation deals with the effects of nonlinear slip, nonlinear thermal radiation, and non‐Newtonian flow parameters on heat transfer of an incompressible magnetohydrodynamic steady flow of an Oldroyd 8‐constant fluid through two parallel infinite plates with convective cooling. The Rosseland approximation is adopted to simulate the radiation effects. Heat exchange with the surrounding at the surfaces is assumed to obey Newton's law of cooling. The system of coupled and highly nonlinear ordinary differential equations governing the model is solved numerically using the method of weighted residual. The combined effects of non‐Newtonian flow parameters, velocity slip parameter, magnetic field parameter, Biot numbers, thermal radiation on the fluid velocity, temperature distributions, skin friction, and the Nusselt number are presented graphically and discussed. It is found that the velocity slip has an increasing effect on the fluid velocity and temperature profiles. For larger values of the thermal radiation parameter, the temperature profile and the Nusselt number are noticed to be increased.  相似文献   

19.
The unsteady boundary layer flow of a nanofluid over a permeable stretching/shrinking sheet is theoretically studied. The governing partial differential equations are transformed into ordinary ones using a similarity transformation, before being solved numerically. The results are obtained for the skin friction coefficient, the local Nusselt number and the local Sherwood number as well as the velocity, temperature and the nanoparticle fraction profiles for some values of the governing parameters, namely, the unsteadiness parameter, the mass suction parameter, the Brownian motion parameter, the thermophoresis parameter, Prandtl number, Lewis number and the stretching/shrinking parameter. It is found that dual solutions exist for both stretching and shrinking cases. The results also indicate that both unsteadiness and mass suction widen the range of the stretching/shrinking parameter for which the solution exists.  相似文献   

20.
In this paper, an analysis is made for a nanofluid flow in a porous channel by introducing the conservation equation of nanoparticle volume fraction into Tiwari and Das's nanofluid model. The suction and chemical reaction are also considered in this work. The governing partial differential equations are simplified by employing a new variable and transformed into a system of high‐order nonlinear ordinary differential equations by similarity transformations. The Keller box method is used to solve this problem numerically. In addition, the influences of significant physical parameters on the distributions of the velocity and temperature as well as nanoparticle concentration are graphically presented and discussed in detail. It is found that there exists a critical value of the permeable parameter which determines the influence law of nanoparticle volume fraction parameter on skin friction coefficient and local Sherwood number. The results also indicate that the concentration increases sharply with the Schmidt number and chemical reaction parameter.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号