首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We prepared activated carbons (ACs) that are among the best adsorbents for hydrogen storage. These ACs were prepared from anthracites and have surface areas (SBET) as high as 2772 m2 g−1. Anthracites activated with KOH presented the highest adsorption capacities with a maximum of 5.3 wt.% at 77 K and 4 MPa. Non-linearity between hydrogen uptake at 77 K and pore texture was confirmed, as soon as their SBET exceeded the theoretical limiting value of (geometrical) surface area, i.e., SBET > 2630 m2 g−1. We separated adsorption and compression contributions to total hydrogen storage. The amount of hydrogen stored is significantly increased by adsorption only at moderate pressure: 3 MPa and 0.15 MPa at 298 and 77 K, respectively. Hydrogen adsorption on ACs at high pressure, above 30 MPa at 298 K and 8 MPa at 77 K, has not interest because more gas can be stored by simply compression in the same tank volume.  相似文献   

2.
Nickel/graphite hybrid materials were prepared by mixed acid treatment of graphite flakes, following metal nanoparticle deposition. The textural properties were studied by BET surface area measurement and t-plot methods with N2/77 K adsorption isotherms. The hydrogen storage characteristics of the nickel/graphite at 298 K and 10 MPa were studied using a pressure-composition-temperature apparatus. The pore structure of the materials was studied as a function of processing conditions. In the optimum material, the hydrogen storage capacity was as high as 4.48 wt.%. The total amount of storage was not proportional to the specific surface area or metal content of the adsorbate. A dipole-induced model on nickel/carbon surfaces is proposed for the hydrogen storage mechanism.  相似文献   

3.
In this study, we prepared highly porous carbon-nanofiber-supported nickel nanoparticles as a promising material for hydrogen storage. The porous carbons were activated at 1050 °C, and the nickel nanoparticles were loaded by an electroless metal-plating method. The textural properties of the porous carbon nanofibers were analyzed using N2/77 K adsorption isotherms. The hydrogen storage capacity of the carbons was evaluated at 298 K and 100 bar. It was found that the amount of hydrogen stored was enhanced by increasing nickel content, showing 2.2 wt.% in the PCNF-Ni-40 sample (5.1 wt.% and 6.4% of nickel content and dispersion rate, respectively) owing to the effects of the spill-over of hydrogen molecules onto the metal–carbon interfaces. This result clearly indicates that the presence of highly dispersed nickel particles can enhance high-capacity hydrogen storage.  相似文献   

4.
Porous carbon has been constructed in various strategies for hydrogen storage. In this work, a simple-effective strategy was proposed to transform sustainable biomass into porous carbon by degrade partial lignin and hemicellulose with Na2SO3 and NaOH aqueous mixture. This method collapses the biomass structure to provide more active sites, and also avoid the generation and accumulation of non-porous carbon nanosheets. As a result, the as-prepared sample possesses high specific surface area (2849 m2 g?1) and large pore volume (1.08 cm3 g?1) concentrating almost completely on micropore. Benefit to these characteristics, the as-prepared sample exhibits appealing hydrogen storage capacity of 3.01 wt% at 77 K, 1 bar and 0.85 wt% at 298 K, 50 bar. The isosteric heat of hydrogen adsorption is as high as 8.0 kJ mol?1, which is superior to the most biochars. This strategy is of great significance to the conversion of biomass and the preparation of high-performance hydrogen storage materials.  相似文献   

5.
Three activated carbons (ACs) having apparent surface areas ranging from 2450 to 3200 m2/g were doped with Pd nanoparticles at different levels within the range 1.3–10.0 wt.%. Excess hydrogen storage capacities were measured at 77 and 298 K at pressures up to 8 MPa. We show that hydrogen storage at 298 K depends on Pd content at pressures up to 2–3 MPa, below which the stored amount is low (<0.2 wt.%). At higher pressures, the micropore volume controls H2 storage capacity. At 77 K, Pd doping has a negative effect on hydrogen storage whatever the pressure considered. From N2 adsorption at 77 K, TPR, XRD, TEM, and H2 chemisorption studies, we concluded that: (i) Pd particles remained mainly decorating the outer surface of the ACs; (ii) increasing Pd content produced an increase of the metal particle size; (iii) ACs with higher surface area produced smaller metallic nanoparticles at a given Pd content.  相似文献   

6.
The anticipated energy crisis due to the extensive use of limited stock fossil fuels forces the scientific society for find prompt solution for commercialization of hydrogen as a clean source of energy. Hence, convenient and efficient solid-state hydrogen storage adsorbents are required. Additionally, the safe commercialization of huge reservoir natural gas (CH4) as an on-board vehicle fuel and alternative to gasoline due to its environmentally friendly combustion is also a vital issue. To this end, in this study we report facile synthesis of polymer-based composites for H2 and CH4 uptake. The cross-linked polymer and its porous composites with activated carbon were developed through in-situ synthesis method. The mass loadings of activated carbon were varied from 7 to 20 wt%. The developed hybrid porous composites achieved high specific surface area (SSA) of 1420 m2/g and total pore volume (TPV) of 0.932 cm3/g as compared to 695 m2/g and 0.857 cm3/g for pristine porous polymer. Additionally, the porous composite was activated converted to a highly porous carbon material achieving SSA and TPV of 2679 m2/g and 1.335 cm3/g, respectively. The H2 adsorption for all developed porous materials was studied at 77 and 298 K and 20 bar achieving excess uptake of 4.4 wt% and 0.17 wt% respectively, which is comparable to the highest reported value for porous carbon. Furthermore, the developed porous materials achieved CH4 uptake of 8.15 mmol/g at 298 K and 20 bar which is also among the top reported values for porous carbon.  相似文献   

7.
Porous materials, especially porous carbon materials, have the most potential as hydrogen adsorbents. In this research, a series of novel rectangular polyaniline tubes (RPTs) are synthesized using hollow carbon nanosphere (HCNS) templates. By changing mass ratios of ammonium persulfate to HCNSs, the sizes of RPTs can be controlled. Chemical activation with KOH gives rise to a large specific surface area (SSA), ranging from 1680 to 2415 m2 g−1, and big pore volumes that range from 1.274 to 1.550 cm3g−1. These observations demonstrate that activated rectangular polyaniline-based carbon tubes ARP-CTs are promising hydrogen adsorbents. Hydrogen uptake measurements show that the highest hydrogen adsorption reaches 5.2 wt% at 5 MPa/77 K and 0.62 wt% at 7.5 MPa/293 K respectively. Notably, the large pore volume can contribute 2.8 wt% to the total hydrogen storage which has approached 8.0 wt% at 5 MPa/77 K.  相似文献   

8.
To increase the interaction between the adsorbed hydrogen and the adsorbent surface to improve the hydrogen storage capacity at ambient temperature, decorating the sorbents with metal nanoparticles, such as Pd, Ni, and Pt has attracted the most attention. In this work, Pt-decorated porous carbons were in-situ synthesized via CVD method using Pt-impregnated zeolite EMC-2 as template and their hydrogen uptake performance up to 20 bar at 77, 87, 298 and 308 K has been investigated with focus on the interaction between the adsorbed H2 and the carbon matrix. It is found that the in-situ generated Pt-decorated porous carbons exhibit Pt nanoparticles with size of 2–4 nm homogenously dispersed in the porous carbon, accompanied with observable carbon nanowires on the surface. The calculated H2 adsorption heats at/near 77 K are similar for both the plain carbon (7.8 kJ mol−1) and the Pt-decorated carbon (8.3 kJ mol−1) at H2 coverage of 0.08 wt.%, suggesting physisorption is dominated in both cases. However, the calculated H2 adsorption heat at/near 298 K of Pt-decorated carbon is 72 kJ mol−1 at initial H2 coverage (close to 0), which decreases dramatically to 20.8 kJ mol−1 at H2 coverage of 0.014 wt.%, levels to 17.9 at 0.073 wt.%, then gradually decreases to 2.6 kJ mol−1 at 0.13 wt.% and closes to that of the plain carbon at H2 coverage above 0.13 wt.%. These results suggest that the introduction of Pt particles significantly enhances the interaction between the adsorbed H2 and the Pt-decorated carbon matrix at lower H2 coverage, resulting in an adsorption process consisting of chemisorption stage, mixed nature of chemisorption and physisorption stage along with the increase of H2 coverage (up to 0.13 wt.%). However, this enhancement in the interaction is outperformed by the added weight of the Pt and the blockage and/or occupation of some pores by the Pt nanoparticles, which results in lower H2 uptake than that of the plain carbon.  相似文献   

9.
While the challenge of storing hydrogen in inexpensive and renewable adsorbents is relentlessly pursued by researchers all over the world, application of hydrochar derived from biomass is also gaining attention as it can be subsequently chemically activated using activating agents like KOH in order to tailor the development of favorable porosity. However, the synergistic effect of hydrothermal carbonization (HTC) process conditions as well as KOH activating conditions on the development of surface morphology is required to be assessed with the application of such porous superactivated hydrochars in hydrogen storage application. In this study, highly porous superactivated hydrochars were fabricated from inexpensive and abundant loblolly pine. Loblolly pine was hydrothermally carbonized at 180 °C, 220 °C and 260 °C and the hydrochars were then activated at different experimental conditions of 700 °C, 800 °C and 900 °C using solid KOH to loblolly pine hydrochar ratio of 2:1, 3:1 and 4:1 to produce superactivated hydrochars. Superactivated hydrochars as well as loblolly pine and its corresponding hydrochars underwent physicochemical analysis as well as surface morphology analysis by SEM and nitrogen adsorption isotherms at 77 K in order to investigate the effect on BET, pore volume, and pore size distribution due to various process conditions. The superactivated hydrochars were then analyzed to quantify total hydrogen storage capacity of these materials at 77 K and up to pressure of 55 bar. Porosity of superactivated hydrochars were as high as 3666 m2/g of BET specific surface area (SSA), total pore volume of 1.56 cm3/g and micropore volume of 1.32 cm3/g with the hydrogen storage capacity of 10.2 wt% at 77 K and 55 bar. It was conclusive from principal component analysis that higher HTC temperature with moderate activation condition demonstrated favorability in developing porous superactivated hydrochars for hydrogen storage applications.  相似文献   

10.
Hydrogen adsorption on porous materials is one of the possible methods proposed for hydrogen storage for transport applications. One way for increasing adsorption at room temperature is the inclusion of metal nanoparticles to increase hydrogen–surface interactions. In this study, ordered mesoporous carbon materials were synthesized by replication of nanostructured mesoporous SBA-15 silica. The combination of different carbon precursors allowed to tailor the textural, structural and chemical properties of the materials. These carbons were used for the synthesis of hybrid nanostructured carbon/palladium materials with different sizes of metal nanoparticles. The hydrogen sorption isotherms were measured at 77 K and 298 K between 0.1 and 8 MPa. Hydrogen storage capacities strongly correlate with the textural properties of the carbon at 77 K. At room temperature, Pd nanoparticles enhance hydrogen storage capacity by reversible formation of hydride PdHx and through the spillover mechanism. The hydrogen uptake depends on the combined influences of metal particle size and of carbon chemical properties. Carbons obtained from sucrose precursors lead to the hybrid materials with the highest storage capacities since they exhibits a large microporous volume and a high density of oxygenated surface groups.  相似文献   

11.
We investigate the use of carbonized bamboo, which has an organic porous structure, as a hydrogen storage material. Bamboo samples were thermally treated at 800, 900, 1000, and 1100 °C for 24 h. The pore size and hydrogen storage capacity of each sample were measured by N2 and H2 gas sorption up to 1.13 bar at 77 K. The maximum hydrogen storage was exhibited by the sample treated at 900 °C, which reached 1.35 wt% at 1.13 bar/77 K. The results showed that the bamboo, one of the green carbons, has the potential to be used as an environmental-friendly carbon backbone for hybrid hydrogen storage materials.  相似文献   

12.
Metal-Organic Frameworks (MOFs) have emerged as potential hydrogen storage media due to their high surface area, pore volume and adjustable pore sizes. The large void space generated by cages in MOFs is not completely utilized for hydrogen storage application owing to weak interactions between the walls of MOFs and H2 molecules. These unutilized volumes in MOFs can be effectively utilized by incorporation of other microporous materials such as single walled carbon nanotubes into the pores of MOFs which could effectively tune the pore size and pore volume of the material towards hydrogen sorption. Single walled carbon nanotubes (SWNT) incorporated MIL-101 composite MOF material (SWNT@MIL-101) was synthesized by adding purified single walled carbon nanotube (SWNT) in situ during the synthesis of MIL-101. The powder X-ray diffraction patterns of SWNT@MIL-101 showed the structure of MOF was not disturbed by SWNT incorporation. Hydrogen sorption capacities of MIL-101 was observed to increase from 6.37 to 9.18 wt% at 77 K up to 60 bar and from 0.23 to 0.64 wt% at 298 K up to 60 bar. The increment in the hydrogen uptake capacities of composite MOF materials was attributed to the decrease in the pore size and enhancement of micropore volume of MIL-101 by single walled carbon nanotube incorporation.  相似文献   

13.
In the present work we study the hydroxide activation (NaOH and KOH) of phenol-formaldehyde resin derived CNFs prepared by a polymer blend technique to prepare highly porous activated carbon nanofibres (ACNFs). Morphology and textural characteristics of these ACNFs were studied and their hydrogen storage capacities at 77 K (at 0.1 MPa and at high pressures up to 4 MPa) were assessed, and compared, with reported capacities of other porous carbon materials.Phenol-formaldehyde resin derived carbon fibres were successfully activated with these two alkaline hydroxides rendering highly microporous ACNFs with reasonable good activation process yields up to 47 wt.% compared to 7 wt.% yields from steam activation for similar surface areas of 1500 m2/g or higher. These nano-sized activated carbons present interesting H2 storage capacities at 77 K which are comparable, or even higher, to other high quality microporous carbon materials. This observation is due, in part, to their nano-sized diameters allowing to enhance their packing densities to 0.71 g/cm3 and hence their resulting hydrogen storage capacities.  相似文献   

14.
Hydrogen storage in porous materials by physical adsorption is being discussed to provide widespread usage of hydrogen energy systems. One of the recent hydrogen storage media that store hydrogen physically is Porous Graphene Frameworks (PGFs). In the study, three different PGFs were constructed by using Benzene-1,3,5-tricarboxylic acid (BTC), 4,40,400-Benzene-1,3,5-triyltribenzoate (BTB) and 4,40,400-(benzene-1,3,5triyl-tris (benzene-4,1-diyl))tribenzoate (BBC) organic linkers. The geometries of the structures were optimized and lithium atoms were dispersed inside. Then, thirty-three different structures were derived. Finally, hydrogen storage capacities and surface areas of each structure were computed. It was found out that 160 lithium dispersed Graphene-BBC structure has the highest hydrogen storage capacity with 4.26 wt % at 298K and 100 bars while 70 lithium dispersed graphene-BTB structure store 9.81 wt % hydrogen at 77K and 4 bars, and lithium free graphene-BBC structure store 20,68 wt % hydrogen at 77K and 100 bars. Lithium dispersion enabled extra surfaces for Graphene-BTB and Graphene-BBC structures to the limits. But surface area of Graphene-BTC structure decreased with lithium dispersion. The number of limits for Graphene-BTB and Graphene-BBC named structures were 70 and 200 lithium atoms, respectively. At the final it is pointed out that constructed novel PGFs could store comparable and relatively high hydrogen in various conditions. The existence of lithium atoms played a minor role to enhance hydrogen storage capacity but the limits are critically important to reach maximum capacity.  相似文献   

15.
In a previous study, we investigated, at a laboratory scale, the chemical activation of two different carbon fibres (CF), their porosity characterization, and their optimization for hydrogen storage [1]. In the present work, this study is extended to: (i) a larger range of KOH activated carbon fibres, (ii) a larger range of hydrogen adsorption measurements at different temperatures and pressures (i.e. at room temperature, up to 20 MPa, and at 77 K, up to 4 MPa), and (iii) a scaling-up activation approach in which the obtained activated carbon fibres (ACF) are compared with those from laboratory-scale activation. The prepared samples cover a large range of porosities, which is found to govern their ability for hydrogen adsorption. The hydrogen uptake capacities of all the prepared samples have been analysed both in volumetric and in gravimetric bases. Thus, maximum adsorption capacities of around 5 wt% are obtained at 77 K, and 1.1 wt% at room temperature, respectively. The packing densities of the materials have been measured, turning out to play an important role in order to estimate the total storage capacity of a tank volume. Maximum values of 17.4 g l−1 at 298 K, and 38.6 g l−1 at 77 K were obtained.  相似文献   

16.
In this work, we prepared platinum doped on activated carbons/metal-organic frameworks-5 hybrid composites (Pt-ACs-MOF-5) to obtain a high hydrogen storage capacity. The surface functional groups and surface charges were confirmed by Fourier transfer infrared spectroscopy (FT-IR) and zeta-potential measurement, respectively. The microstructures were characterized by X-ray diffraction (XRD). The sizes and morphological structures were also evaluated using a scanning electron microscopy (SEM). The pore structure and specific surface area were analyzed by N2/77 K adsorption/desorption isotherms. The hydrogen storage capacity was studied by BEL-HP at 298 K and 100 bar. The results revealed that the hydrogen storage capacity of the Pt-ACs-MOF-5 was 2.3 wt.% at 298 K and 100 bar, which is remarkably enhanced by a factor of above five times and above three times compared with raw ACs and MOF-5, respectively. In conclusion, it was confirmed that Pt particles played a major role in improving the hydrogen storage capacity; MOF-5 would be a significantly encouraging material for a hydrogen storage medium as a receptor.  相似文献   

17.
Corncob-derived activated carbon (CAC) was prepared by potassium hydroxide activation. The Pt/Pd-doped CAC samples were prepared by two-step reduction method (ethylene glycol reduction plus hydrogen reduction). The as-obtained samples were characterized by N2-sorption, TEM and XRD. The results show the texture of CAC is varied after doping Pt/Pd. The Pd particles are easier to grow up than Pt particles on the surface of activated carbon. For containing Pt samples, the pore size distributions are different from original sample and Pd loaded sample. The hydrogen uptake results show excess hydrogen uptake capacity on the Pt/Pd-doped CAC samples are higher than pure CAC at 298 K, which should be attributed to hydrogen spillover effects. The 2.5%Pt and 2.5%Pd hybrid doped CAC sample shows the highest hydrogen uptake capacity (1.65 wt%) at 298 K and 180 bar, The particle size and distribution of Pt/Pd catalysts could play a crucial role on hydrogen uptake by spillover. The total hydrogen storage capacity analysis show that total H2 storage capacities for all samples are similar, and spillover enhanced H2 uptakes of metal-doped samples could not well support total H2 storage capacity. The total pore volume of porous materials also is a key factor to affect total hydrogen storage capacity.  相似文献   

18.
This paper reports a facile method for the preparation of nitrogen-doped carbon nanotubes (N-doped CNTs) that shows enhanced hydrogen storage capacity. The synthesis method involves simple pyrolysis of melamine using FeCl3 as catalyst in tube furnace. The materials were characterized by scanning electron microscopy, transmission electron microscopy, X-ray photoelectron spectroscopy, elemental analysis, Raman spectroscopy, and nitrogen adsorption–desorption analysis. The results indicated that the prepared N-doped CNTs have a bamboo-like structure with thin compartment layers. The nitrogen doping concentration, specific surface area, and total pore volume of the N-doped CNTs were determined to be 1.5 at%, 135 m2/g, and 0.38 cm3/g, respectively. The hydrogen adsorption measurements at 77 K showed that the N-doped CNTs exhibits gravimetric hydrogen uptake of 0.21 wt% at 1 bar and 1.21 wt% at 7 bar. At room temperature, hydrogen uptake as high as 0.17 wt% at 298 K and 19 bar is achieved, which is among the highest data reported for the N-doped carbon materials under the same condition.  相似文献   

19.
In this work, activated multi-walled carbon nanotubes (Acti-MWNTs) with well-developed pore structures, a highly specific surface area, and higher hydrogen adsorption capacities due to CO2 activation were prepared. The activation was performed at activation temperatures in the range of 500–1100 °C. The microstructure and crystallinity of the Acti-MWNTs were evaluated with a transmission electron microscope (TEM) and an FT-Raman spectrometer, respectively. The textural properties of the Acti-MWNTs were investigated by using a nitrogen gas sorption analyzer at 77 K. The hydrogen storage capacities of the Acti-MWNTs were investigated by BEL-HP at 298 K/100 bar. The hydrogen storage capacities of the Acti-MWNTs were enhanced to 0.78 wt.% by increasing activation temperatures to 900 °C, which resulted in the formation of a defective structure in the Acti-MWNTs. This result indicated that the CO2 activation was one of the most effective methods to develop the textural properties, as well as to enhance the hydrogen storage capacities of MWNTs.  相似文献   

20.
Metal organic framework (MOF) are widely used in adsorption and separation due to their porous nature, high surface area, structural diversity and lower crystal density. Due to their exceptional thermal and chemical stability, Cu-based MOF are considered excellent hydrogen storage materials in the world of MOFs. Efforts to assess the effectiveness of hydrogen storage in MOFs with molecular simulation and theoretical modeling are crucial in identifying the most promising materials before extensive experiments are undertaken. In the current work, hydrogen adsorption in four copper MOFs namely, MOF-199, MOF 399, PCN-6′, and PCN-20 has been analyzed. These MOFs have a similar secondary building unit (SBU) structure, i.e., twisted boracite (tbo) topology. The Grand Canonical Monte Carlo (GCMC) simulation was carried at room temperature (298 K) as well as at cryogenic temperature (77 K) and pressures ranging from 0 to 1 bar and 0–50 bar. These temperatures and pressure were selected to comply with the conditions set by department of energy (DOE) and to perform a comparative study on hydrogen adsorption at two different temperatures. The adsorption isotherm, isosteric heat, and the adsorption sites were analyzed in all the MOFs. The findings revealed that isosteric heat influenced hydrogen uptake at low pressures, while at high pressures, porosity and surface area affected hydrogen storage capacity. PCN-6′ is considered viable material at 298 K and 77 K due to its high hydrogen uptake.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号