首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The performance of power battery is a significant factor affecting the overall quality of electric vehicles. To optimize the thermal management effect of battery pack, cold plate with wedge‐shaped microchannels was proposed in this paper. On the basis of the models of the independent cold plate and the battery‐cooling module, the effects of outlet aspect ratio, flow rate, and branching structure on the heat dissipation performance of the cold plate were studied at first. Afterwards, the effects of cooling surface, flow rate, and branching structure on the temperature distribution of the battery module were simulated. The results showed that the wedge‐shaped channels provided a good cooling efficiency and surface temperature uniformity. When the wedge‐shaped channel was used in thermal management of the battery module, the side‐cooling method reduced the temperature difference of batteries by more than 35.71% compared with front cooling under the mass flow rate of 2 × 10?5 kg/s. At a discharge rate of 3.5 C, the flow rate of 1 × 10?4 kg/s controlled the battery temperature to within 45°C, and the branching structure designed for the module successfully decreased the maximum temperature difference from 7.27°C to 4.67°C, which has been reduced by approximately 35.78%.  相似文献   

2.
The thermal safety of electric vehicle battery modules attracts public concern; controlling the severe temperature rise and ensuring uniform temperature distribution are essential to addressing this problem. In this research, a liquid cooling-based cooling structure equipped with minichannels is proposed to prevent a battery module's overheating. A novel cooling scheduling study is proposed to arrange the coolant flow rates at different cooling stages. The temperature rise, temperature difference, and energy consumption of all the cooling schedules are measured in experiments. Experimental findings indicate that appropriate cooling scheduling achieves the thermal objectives and reduces energy consumption through scheduling the coolant flow rate in the cooling process. A comprehensive cooling schedule selection is carried out to select the optimal cooling schedule with the highest cooling efficiency through evaluating both the thermal and energy consumption objective parameters under different discharging current rates (0.5C, 1C, and 1.5C). The optimal cooling schedule maintains the maximum temperature of the battery module within 26°C, 32°C, and 40°C under 0.5C, 1C, and 1.5C discharging current rates, respectively. Moreover, the temperature SD and the energy consumption of the liquid cooling-based battery pack can be controlled within 3.5°C and 40 J, respectively.  相似文献   

3.
To achieve safe, long lifetime, and high‐performance lithium‐ion batteries, a battery thermal management system (BTMS) is indispensable. This is especially required for enabling fast charging‐discharging and in aggressive operating conditions. In this research, a new type of battery cooling system based on thermal silica plates has been designed for prismatic lithium‐ion batteries. Experimental and simulations are combined to investigate the cooling capability of the BTMS associated to different number of cooling channels, flow rates, and flow directions while at different discharge C‐rates. Results show that the maximum temperature reached within the battery decreases as the amount of thermal silica plates and liquid channels increases. The flow direction had no significant influence on the cooling capability. While the performance obviously improves with the increase in inlet flow rate, after a certain threshold, the gain reduces strongly so that it does not anymore justify the higher energy cost. Discharged at 3 C‐rate, an inlet flow rate of 0.1 m/s was sufficient to efficiently cool down the system; discharged at 5 C‐rate, the optimum inlet flow rate was 0.25 m/s. Simulations could accurately reproduce experimental results, allowing for an efficient design of the liquid‐cooled BTMS.  相似文献   

4.
The power battery as an indispensable part of electric vehicle has attracted much attention in recent years. Among these, the lithium‐ion battery is the most important option due to the high energy density, good stability, and low discharge rate. However, the thermal safety problem of lithium‐ion battery cannot be ignored. Therefore, it is very necessary to explore an effective thermal management system for battery module. Here, a thermal silica cooling plate‐aluminate thermal plate (SCP‐ATP) coupling with forced convection air cooling system as a thermal management system is proposed for improving the cooling performance of pouch battery module. The results reveal that the heat dissipating performance and temperature uniformity of pouch battery module with SCP‐ATP are greatly improved compared with other thermal management systems. Moreover, the highest temperature can be controlled below 50°C, and the temperature differences can be maintained with 3°C when the SCP‐ATP coupling forced convection is utilized to enhance the heat transfer coefficient. Furthermore, considering the cooling effectiveness and consumption cost comprehensively, the optimal air velocity of the SCP‐ATP coupling forced convection cooling system is 9 m/s. In addition, the SCP‐ATP filling with different proportions of acetone has also been investigated for pouch battery module, indicating that 50% acetone exhibited a better heat transfer effect than the 30% one. Therefore, this research would provide a significant value in the design and optimization of thermal management systems for battery module.  相似文献   

5.
To investigate the thermal characteristics and uniformity of a lithium-ion battery (LIB) pack, a second-order Thevenin circuit model of single LIB was modeled and validated experimentally. A battery thermal management system (BTMS) with reciprocating liquid flow was established based on the validated equivalent circuit model. The effects of the reciprocation period, battery module coolant flow rate and ambient temperature on the temperature and the temperature imbalance of batteries were studied. The results illustrate that the temperature difference can be effectively reduced by 3°C when the reciprocating period is 590 seconds. The reciprocating coolant flow rate is 11.5% and 33.3% that of the unidirectional flow BTMS for cooling and heating when same thermal effects are to be achieved. Under the same ambient temperature condition, the maximum temperature and average temperature difference can be reduced by 1.67°C and 3.77°C, respectively, at best for the battery module investigated with a reciprocating liquid-flow cooling system. The average temperature difference and heating power consumption could be reduced by 1.2°C and 14 kJ for reciprocating liquid flow heating system with period of 295 seconds when compared with unidirectional flow. As a result, the thermal characteristics and temperature uniformity can be effectively improved, and the parasitic power consumption can be significantly reduced through adoption of a reciprocating liquid flow BTMS.  相似文献   

6.
Temperature affects the performance of electric vehicle battery. To solve this problem, micro heat pipe arrays are utilized in a thermal management system that cools and heats battery modules. In the present study, the heat generation of a battery module during a charge‐discharge cycle under a constant current of 36 A (2C) was computed. Then, the cooling area of the condenser was calculated and experimentally validated. At rates of 1C and 2C, the thermal management system effectively reduced the temperature of the module to less than 40°C, and the temperature difference was controlled less than 5°C between battery surfaces of the module. A heating plate with 30‐W power effectively improved charge performance at low temperature within a short heating time and with uniform temperature distribution. Charge capacity obviously increased after heating when battery temperature was below 0°C. This study presents a new way to enhance the stability and safety of a battery module during the continuous charge‐discharge cycle at high temperatures and low temperatures accordingly.  相似文献   

7.
A proper and effective battery thermal management system (BTMS) is critical for large‐capacity pouch cells to guarantee a suitable operating temperature and temperature difference. Hence, in this paper, a micro heat pipe array (MHPA) is utilized to build the thermal management system for large‐capacity pouch cells. In order to study the property of BTMS in depth, experimental and numerical investigation are carried out by considering the C‐rate, working medium, air velocity and duty. The experimental results present that the Tmax can be maintained below 43.7°C and the ΔT is below 4.9°C at the discharge rate of 3C in the battery module with MHPA‐liquid. Moreover, the Tmax of the battery module with MHPA‐liquid falls as the air velocity increases. The simulation results show that the variation and distribution of temperature matched well with experimental results. It demonstrates that the MHPA‐based BTMS is viable and effective for large‐capacity pouch cell battery, even at high C‐rate and cycle duty.  相似文献   

8.
In this paper, a numerical model using ANSYS Fluent for a minichannel cold plate is developed for water-cooled LiFePO4 battery. The temperature and velocity distributions are investigated using experimental and computational approach at different C-rates and boundary conditions (BCs). In this regard, a battery thermal management system (BTMS) with water cooling is designed and developed for a pouch-type LiFePO4 battery using dual cold plates placed one on top and the other at the bottom of a battery. For these tasks, the battery is discharged at high discharge rates of 3C (60?A) and 4C (80?A) and with various BCs of 5°C, 15°C, and 25°C with water cooling in order to provide quantitative data regarding the thermal behavior of lithium-ion batteries. Computationally, a high-fidelity computational fluid dynamics (CFD) model was also developed for a minichannel cold plate, and the simulated data are then validated with the experimental data for temperature profiles. The present results show that increased discharge rates (between 3C and 4C) and increased operating temperature or bath temperature (between 5°C, 15°C, and 25°C) result in increased temperature at cold plates as experimentally measured. Furthermore, the sensors nearest the electrodes (anode and cathode) measured the higher temperatures than the sensors located at the center of the battery surface.  相似文献   

9.
In the present study, the results of a cold‐hot water dispenser with a thermoelectric module system (TMS) are presented. The cold‐hot water dispenser with thermoelectric module system consists of a cold water loop, a hot water loop, a coolant loop, and a thermoelectric module. The thermoelectric cooling and heating modules consist of four and two water blocks, nine and three thermoelectric plates, respectively. The cooling and heating capacities obtained from the cold‐hot water dispenser with TMS are compared with those from a conventional cold‐hot water dispenser with a compression refrigeration system (CRS). As compared with the conventional cold‐hot water dispenser with CRS, the cold‐hot water dispenser with TMS can be operated at the minimum cold water temperature of 10 to 13°C and the maximum hot water temperature of 65°C. The obtained results are expected provide guidelines to design cold‐hot water dispensers with TMS.  相似文献   

10.
Appropriate temperature range and distribution is necessary for Li-ion battery module, especially in real application of electric vehicles and other energy storage devices. In this study, a comprehensive design of liquid cooling–based thermal management system for a Li-ion battery module's fast discharging process is investigated, and thermal analysis and numerical computation are conducted. The effects of different flow directions, different shapes of the liquid channels, different widths of channels, different thicknesses of cold plate, and the comparison between uniform and nonuniform channels' distribution are analyzed. Simulation results indicate that the liquid cooling system provides acceptable cooling performance in preventing heat runaway of the battery module under 5C discharging current rate. A five-channel cooling plate can reduce the maximum temperature with appropriate design. Additionally, specific flow direction mini-channels, different shapes of the liquid-channels, and nonuniform channels are designed to compare the maximum temperature and uniformity of temperature distribution in the module. Maximum temperature can be improved through the increase of channel width and thickness of the cooling plate. The original design is proved to be the best design considering the maximum temperature, maximum temperature deviation, and final temperature standard deviation of the fast discharging process.  相似文献   

11.
An experiment has been performed to investigate the cooling performance of a thermoelectric ceiling cooling panel (TE‐CCP). The TE‐CCP was composed of 36 TE modules. The cold side of the TE modules was fixed to an aluminum ceiling panel to cool a test chamber of 4.5 m3 volume, while a copper heat exchanger with circulating cooling water at the hot side of the TE modules was used for heat release. Tests were conducted using various system parameters. It was found that the cooling performance of the system depended on the electrical supply, cooling water temperature and flow rate through the heat exchanger. A suitable condition occurred at 1.5 A of current flow with a corresponding cooling capacity of 289.4 W which gives the coefficient of performance (COP) of 0.75 with an average indoor temperature of 27°C. Using thermal comfort test data in literature for small air movements under radiant cooling ceilings, results from the experiments show that thermal comfort could be obtained with the TE‐CCP system. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

12.
As the main form of energy storage for new energy automobile, the performance of lithium-ion battery directly restricts the power, economy, and safety of new energy automobile. The heat-related problem of the battery is a key factor in determining its performance, safety, longevity, and cost. In this paper, parallel liquid cooling battery thermal management system with different flow path is designed through changing the position of the coolant inlet and outlet, and the influence of flow path on heat dissipation performance of battery thermal management system is studied. The results and analysis show that when the inlet and the outlet are located in the middle of the first collecting main and the second collecting main, respectively; system can achieve best heat dissipation performance, the highest temperature decrease by 0.49°C, while the maximum temperature difference of system decreases by 0.52°C compared with typical Z-type BTMS under the discharge rate of 1 C. Then an optimization strategy is put forward to improve cooling efficiency compared with single-inlet and single-outlet symmetrical liquid cooling BTMS; the highest temperature of three-inlet and three-outlet is 27.98°C while the maximum temperature difference of three-inlet and three-outlet is 2.69°C, decrease by 0.7 and 0.67°C, respectively.  相似文献   

13.
Abstract

Two types of novel trapezoidal battery modules with taper angles of 60° and 90° are proposed. Flow and heat transfer characteristics of the battery modules are investigated numerically and compared with rectangular battery module. Results show that acceleration of fluid, cell arrangement, and gap spacing are three main factors influencing the velocity and temperature distribution in trapezoidal battery modules. Combination of water cooling and trapezoidal battery module with taper angle of 60° is an optimal choice, and the maximum cell temperature difference can be decreased as high as 27% as compared to that of traditional rectangular battery module.  相似文献   

14.
This paper presents the surface temperature and voltage distributions on a prismatic lithium-ion battery pack at 1C, 2C, 3C, and 4C discharge rates and 5 °C, 15 °C, 25 °C, and 35 °C boundary conditions (BCs) for water cooling and ~ 22 °C for air cooling methods. It provides quantitative data regarding thermal behaviour of lithium-ion batteries for designing thermal management systems and developing reliable thermal models. In this regard, three large LiFePO4 20 Ah capacity, prismatic batteries are connected in series with four cold plates used between cells and eighteen thermocouples are placed at distributed locations on the principle surface of all three cells: the first six for the first cell, the second six for the second cell, and the third six for the third cell, and the average and peak surface temperatures as well as voltage distributions are measured and presented in this study. In addition, the simulated heat generation rate, temperature and voltage distributions are validated with an experimental data for the above mentioned C-rates and BCs. The present study shows that increasing discharge rates and BCs results in increase in the maximum and average surface temperatures at the three locations (near the anode, cathode, and mid surface of the body). The highest value of the average surface temperature is obtained for 4C and 35 °C BC (36.36 °C) and the lowest value is obtained for 1C and 5 °C BC (7.22 °C) for water cooling method.  相似文献   

15.
In high concentrating photovoltaic systems, thermal regulation is of great importance to the conversion efficiency and the safety of solar cells. Direct‐contact liquid film cooling technique is an effective way of thermal regulation with low initial investment. Tilt of solar cells is common in concentrating solar systems. An evaluation of direct‐contact liquid film cooling technique behind tilted high concentration photovoltaics was performed using both experimental and computational approaches. In the experiment, deionized water was used as the coolant at the back of simulated solar cells. Solar cell inclination of 0° to 75° with inlet water flow rate of 100–300 L/hour and inlet temperature of 30°C to 75°C were experimentally investigated. A two‐dimensional model was developed using computational fluid dynamics technique and validated by experimental results. The effects of inclination on average temperature, temperature uniformity, and heat transfer coefficient were discovered in this paper. The results indicated that 20° is the optimum angle for liquid film cooling. In addition, optimum inlet width, temperature, and velocity for inclination over 30° are 0.75 mm, 75°C, and 0.855 m/s, respectively.  相似文献   

16.
Some potential safety risks for lithium ion battery such as overheating, combustion, and explosion occurred in practical application may cause accidents of electric vehicles. Phase change material (PCM)‐based thermal management system was demonstrated as a feasible approach. However, the batteries have to endure various environment and climate, which would not work normally under cold area. Especially when the surrounding temperature falls to below 10°C, which can bring about the energy and power of Li‐ion batteries rapidly reducing. In this study, a coupling heating strategy of the PCM‐based batteries module with 2 heat sheets at low temperature was proposed for batteries module and cannot only balance the temperature among different batteries in the module but also ensure to pre‐heat the batteries module at low temperature. The experiment displayed that 7% of EG in paraffin‐based composite PCMs was the best proportion for batteries module, considering both fluidity and thermal conductivity factors. In addition, the temperature difference of PCM‐based batteries module was 2.82°C, while that of the air‐based one was 14.49°C, which was 5 times more than former, exhibiting an excellent performance in balancing temperature uniformly, and was beneficial for prolonging the lifespan of batteries. The coupling heating strategy‐based PCM with heat sheets provided as an extremely promising technology for lithium batteries module at low temperature.  相似文献   

17.
The thermal behavior of a Li‐ion battery module that belongs to the battery system of an actual electric vehicle prototype was numerically investigated. Realistic driving loads and passive cooling conditions were considered. A combination of a vehicle dynamics model, an equivalent electric circuit battery model, and a 3D finite‐element thermal model was used in the analysis. Temperature and electric potential measurements, performed at the cell and module levels, were first used for model calibration. Electric currents, associated with the ARTEMIS driving cycles, were then calculated and applied in the battery model to predict the heat sources for the thermal model. It was found that the temperature increase corresponding to urban transportation requirements in European countries is tolerable. Nevertheless, road and highway applications would result in a temperature increase that accelerates cell ageing, and an active cooling strategy is required. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

18.
Lithium-ion batteries, as the only source of driving force for electric vehicles (EV), directly determine the vehicle's power performance, driving mileage, and working stability. The performance, safety, and longevity of lithium-ion batteries are related to battery temperature. In this article, surface topography has been added in mini-channel liquid cooling plate, the influence of different shapes, different heights, different diameters, and different numbers of surface topography on the cooling effect of mini-channel liquid cooling plate were researched by using CFD method. This article revealed that the addition of surface topography in mini-channel can affect the flow trajectory of coolant and improve the cooling capacity of the cold plate. When five cylindrical surface topography with a diameter of 10 mm and a height of 1.5 mm were added in each channel, the highest temperature of the battery can be suppressed to 42.01°C and the maximum temperature difference can reach 15.78°C under 3C discharge rate, compared with the smooth mini-channel, decreased by 1.02°C and 0.85°C, respectively.  相似文献   

19.
The performance of Li‐ion battery depends on the temperature. Active liquid cooling system can keep the battery temperature within an optimal range, but the system itself consumes energy. This paper reported the experimental work on the thermal performance of liquid cooling system for the battery module under different cooling schemes. It was hoped that energy consumption could be reduced as much as possible. Meanwhile, liquid cooling system could provide effective cooling for the battery module. Two identical real battery modules including 18 cylindrical cells (with and without cooling system) were manufactured for the validity of comparison. The 2 battery modules discharged at the discharge rates of 1C and 1.5C. Charge and discharge cycle test was also carried out. The results indicated that a simple hysteresis control cooling scheme could reduce the energy consumption effectively. The energy consumption was saved by 83.2% and 49% at the discharge rates of 1C and 1.5C, respectively. Meanwhile, the temperature of battery module was still kept within the optimal range. The maximum temperature appeared on different cells in the battery module during the process of charge and discharge. Thus, the temperature dynamic comparison mechanism was very necessary.  相似文献   

20.
In this study, a lumped parameter simulation model has been developed for analysis of the thermal performance of a single-stage two-bed adsorption chiller. Since silica gel has low regeneration temperature and water has high latent heat of vaporisation, silica gel–water pair has been chosen as the working pair of the adsorption chiller. Low-grade waste heat or solar heat at around 70–80°C can be used to run this adsorption chiller. In this model, the effects of operating parameters on the performance of the chiller have been studied. The simulated results show that the cooling capacity of the chiller has an optimum value of 5.95?kW for a cycle time of 1600?s with the hot, cooling, and chilled water inlet temperatures at 85°C, 25°C, and 14°C, respectively. The present model can be utilised to investigate and optimise adsorption chillers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号