首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 93 毫秒
1.
对一种带压缩空气储能的冷热电联产系统进行了热力学(火用)分析,得到了各主要部件和整个系统的(火用)损失及(火用)效率的变化规律.分析结果表明空气透平绝热效率的提高对系统(火用)效率的贡献大于压缩机效率同样提高的功效;在其它参数确定时,存在最佳压比,可使系统的(火用)效率在该条件下达极值;高温换热器是新型冷热电联产系统中产生(火用)损失的主要部件,而循环水量的大小是影响高温换热器(火用)效率的主要因素.  相似文献   

2.
The exergy analysis of an electric vehicle heat pump air conditioning system(HPACS) with battery thermal management system was carried out by studying the exergy loss of each component. The results indicate that the compressor is the main source of system exergy loss in all operation conditions. The exergy loss distribution of HPACS is almost the same when the battery thermal management system integrated into the HPACS in cabin and battery mixed cooling mode and the system exergy loss was linearly related to the compressor speed in cooling modes. The performance of the HPACS is better than that of the positive temperature coefficient(PTC) heater in cabin heating mode. The degree of exergy efficiency improvement of the alternative mode was discussed at all operation conditions in cabin heating mode. The results indicate that the optimization effect using the electric vehicle HPACS to replace the PTC heater is obvious at lower compressor speed, surrounding temperature and internal condenser air flow rate.  相似文献   

3.
As the increase in greenhouse emissions, climate changes, and other irreversible repercussions stems from environmentally destructive energies such as fossil fuels, exploiting solar and geothermal energy as unlimited clean sources of energy in the renewable energy technologies can survive the planet earth, which is facing a catastrophe on a global scale. The main purpose of this research is to study Techno analysis of the combined ground source heat pump (GSHP) and photovoltaic thermal collectors (PVTs) with a “phase-change material” (PCM) storage tank to fulfill the energy demands of a residential building. In the first step of this study, in order to model the heat pump behavior in multi-usage operation modes (heating and cooling), a numerical transient simulation of a water-to-water GSHP, which includes a vertical U-type ground source heat exchanger (GSHX) and a variable speed drive (VSD) compressor, was conducted by developing a numerical code in Engineering Equation Solver software. To study the thermodynamic aspect of the hybrid system in terms of exergy and energy, a transient numerical simulation was accomplished using the TRNSYS program. Also, the impact of effective characteristics of ingredients such as areas of PVT panels and the volume of the storage tank of PCMs on the performance of the hybrid system are investigated. On top of that, the two types of the GSHP-PVT-PCMs and GSHP-PV from the energy and exergy points of view are compared. The obtained results demonstrate that the irreversibility of the solar modules of the GSHP-PVT-PCMs is 6.6% lower than that of the GSHP-PV. Furthermore, the calculation of the annual required load of the building for these two kinds of hybrid systems shows that the use of collectors in this combined system has reduced the total load of the building by 6.5%. The use of collectors in the GSHP-PVT-PCM gives rise to a difference in the value of solar factor (SF) of this system by 1.4% more than the one for the hybrid system without thermal collectors.  相似文献   

4.
Air-conditioning system consumes a large amount of electricity in residential sections,and its efficiency has drawn extensive concerns in energy-conscious era.Liquid-vapor separation is a heat transfer enhancement technology that can effectively improve the performance of the heat exchanger as well as the system.In this paper,a regular air-conditioning system as the baseline(system-A)and other two air-conditioning systems with liquid-vapor separation heat exchanger(system-B and system-C)are comparatively studied.The component behaviors and system performances are deeply explored by using advanced exergy analysis with a focus on quantifying how much consequences come from the variants,i.e.liquid-vapor separation.The results indicate that the system-B has large reduced exergy destruction from the compressor and condenser at cooling mode relative to the system-A.The system-C has mainly diminished exergy destruction in the compressor caused by other components relative to the system-B.At heating mode,the system-C has an enhanced system exergy efficiency of 9.6%over the system-A,and it also has the decreased avoidable exergy destruction which is dominantly contributed by the compressor and evaporator.Furthermore,it is found that liquid-vapor separation mainly benefits the compressor and outdoor heat exchanger where it locates,leading to the system performance improvements.  相似文献   

5.
垂直螺旋盘管地源热泵供暖制冷实验研究   总被引:5,自引:1,他引:5  
结合一实际用户建立垂直螺旋盘管地源热泵实验系统,在供暖制冷工况下测量地下盘管的进出水温度,盘管从地下的取热量、排热量,从而分析系统性能、供热、制冷系数。  相似文献   

6.
高青  于鸣  白金玉  李明 《太阳能学报》2003,24(3):307-310
以太阳辐射积聚大量能量和冷热良性循环蓄集巨大能量的地下是一个庞大的可再生能源库,也是一项可充分利用的自然能量资源。该文介绍了在地源热泵系统中开展的地下100m和200m竖直井闭式循环传热的研究工作,提出利用地下螺旋芯管束新方法,加强旋流流动,提高地下换热能力。试验表明,在放热和吸热过程中,传热均得到显著提高。所提出的可控制间歇过程,将充分发挥换热井的换热能力,实现最少的井数布置,保证良好的地源热泵机组运行工况。  相似文献   

7.
Since heating and cooling systems of buildings consume 30–50% of the global energy consumption, increased efficiency of such systems means a considerable reduction in energy consumption. Ground source heat pumps (GSHP) are likely to play a central role in achieving this goal due to their high energy efficient performance. The efficiency of GSHP depends on the ground temperature, heating and cooling demands, and the distribution of heating and cooling over the year. However, all of these are affected by the ongoing climatic change. Consequently, global warming has direct effects on the GSHP performance. Within the framework of current study, heating and cooling demands of a reference building were calculated for different global warming scenarios in different climates i.e. cold, mild and hot climate. The prime energy required to drive the GSHP system is compared for each scenario and two configurations of ground heat exchangers. Current study shows that the ongoing climatic change has significant impact on GSHP systems.  相似文献   

8.
This paper presents the cooling performance of a water-to-refrigerant type ground heat source heat pump system (GSHP) installed in a school building in Korea. The evaluation of the cooling performance has been conducted under the actual operation of GSHP system in the summer of year 2007. Ten heat pump units with the capacity of 10 HP each were installed in the building. Also, a closed vertical typed-ground heat exchanger with 24 boreholes of 175 m in depth was constructed for the GSHP system. To analyze the cooling performance of the GSHP system, we monitored various operating conditions, including the outdoor temperature, the ground temperature, and the water temperature of inlet and outlet of the ground heat exchanger. Simultaneously, the cooling capacity and the input power were evaluated to determine the cooling performance of the GSHP system. The average cooling coefficient of performance (COP) and overall COP of the GSHP system were found to be ~8.3 and ~5.9 at 65% partial load condition, respectively. While the air source heat pump (ASHP) system, which has the same capacity with the GSHP system, was found to have the average COP of ~3.9 and overall COP of ~3.4, implying that the GSHP system is more efficient than the ASHP system due to its lower temperature of condenser.  相似文献   

9.
Heat pumps have been spotlighted as efficient building energy systems because they have great potentials for energy reduction in building air conditioning and reducing CO2 emission. In this study, a multi-function heat pump which has the functions of heating, cooling, and hot water supply was designed and its performance was investigated according to operating modes. In the cooling-hot water mode, the capacity and COP were enhanced as compared to other modes because the waste heat from the outdoor heat exchanger was utilized as useful heat in the indoor heat exchanger. In the heating and hot water supply mode, the compressor speed should be increased to get appropriate heating and hot water capacities. For all operating modes, the system could be optimized by adjusting the superheat.  相似文献   

10.
The main solution for the reduction of energy consumption in the field of HVAC is the development of new and renewable energy technologies. Among the various renewable energy systems, ground source heat pump (GSHP) systems have been spotlighted as efficient building energy systems because of their great potentials for energy reduction in building air conditioning and reducing CO2 emissions. However, higher initial cost works as a barrier to the promotion of their use. Therefore, it is critical to reduce the initial costs by optimizing the design of the system. In this paper, parameters that affect the performance of the GSHP system and the size of ground loop heat exchanger (GLHX) have been investigated. Ratio of GLHX length to unit capacity (L/Q) decreased according to increasing value of thermal conductivity, but L/Q increased according to increasing value of borehole heat transfer resistance. In cooling mode, L/Q decreased according to increasing EWT of underground circulating water and borehole distance but increased in heating mode. The value of L/Q tended to increase according to increasing underground initial temperature in cooling mode, but decreased in heating mode. L/Q decreased according to increasing U-tube separation distance and decreasing underground circulating water flow rate, because the thermal interference effect of underground circulating water and heat absorption and emission rate from the ground decreased. The reduction of the size of GLHX is very important in the aspect of saving total installation cost of a GSHP system. Therefore, the size of GLHX and the performance of GSHP system should be considered together for optimum design of the GSHP system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号